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Automated Data Cleaning can Hurt Fairness in
Machine Learning-Based Decision Making

Shubha Guha”, Falaah Arif Khan

Abstract—In this paper, we interrogate whether data quality
issues track demographic group membership (based on sex, race
and age) and whether automated data cleaning — of the kind
commonly used in production ML systems — impacts the fairness
of predictions made by these systems. To the best of our knowl-
edge, the impact of data cleaning on fairness in downstream tasks
has not been investigated in the literature. We first analyse the
tuples flagged by common error detection strategies in five research
datasets. We find that, while specific data quality issues, such as
higher rates of missing values, are associated with membership
in historically disadvantaged groups, poor data quality does not
generally track demographic group membership. As a follow-up,
we conduct a large-scale empirical study on the impact of auto-
mated data cleaning on fairness, involving more than 26,000 model
evaluations. We observe that, while automated data cleaning is
unlikely to worsen accuracy, it is more likely to worsen fairness
than to improve it, especially when the cleaning techniques are
not carefully chosen. Furthermore, we find that the positive or
negative impact of a particular cleaning technique often depends on
the choice of fairness metric and group definition (single-attribute
or intersectional). We make our code and experimental results
publicly available. The analysis we conducted in this paper is
difficult, primarily because it requires that we think holistically
about disparities in data quality, disparities in the effectiveness
of data cleaning methods, and impacts of such disparities on ML
model performance for different demographic groups. Such holistic
analysis can and should be supported by data engineering tools, and
requires substantial data engineering research. Towards this goal,
we discuss open research questions, envision the development of
fairness-aware data cleaning methods, and their integration into
complex pipelines for ML-based decision making.

Index Terms—Responsible data management, data cleaning,
data preparation, fairness in machine learning.

I. INTRODUCTION

OFTWARE systems that learn from user data with machine
S learning (ML) are in ubiquitous use in critical decision-
making processes such as loan approvals, hiring, and prioritizing
access to medical interventions. Unfortunately, if left unchecked,
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such applications often reproduce or even amplify pre-existing
bias in the data, and may lead to unlawful discrimination [1].
Most ML applications in production are data-intensive, and
require data cleaning [2]. Such applications regularly acquire
new training data in short intervals (e.g., nightly from log files),
and subsequently retrain and redeploy models, which then make
predictions on previously unseen data. Real-world data — pro-
cessed by production ML systems — inevitably contains data
errors [3], [4], [5], [6]. Due to large data volumes and short
redeployment intervals, data quality issues are often addressed
with automated cleaning techniques (e.g., to impute missing
values, which many ML models cannot handle directly).

What is the impact of data errors and automated cleaning
on model performance, both overall and for subsets of the data
corresponding to different demographic groups? This question
is both crucial and understudied, with very real implications
for production ML systems currently used for critical decision-
making. There are indications that data from historically dis-
advantaged groups may be more likely to suffer from poor
quality, such as higher occurrence of missing values [7]. Such
“heteroskedastic noise” in the data, in turn, has the potential to
negatively impact ML model fairness [8]. Yet, while there is
plenty of evidence that data quality issues hurt the predictive
accuracy of ML models [5], it is unclear whether (1) poor data
quality tracks membership in disadvantaged groups, and (2)
attempts to improve data quality through automated cleaning
impact the fairness of ML models (e.g., by amplifying disparities
in prediction quality among groups).

Related Work and Research Gap: To the best of our knowl-
edge, these questions have not been investigated in prior work.
On the one hand, the growing body of work on joint cleaning and
learning [5], [9], [10], [11] focuses on predictive accuracy but not
on fairness. On the other hand, research on fairness in ML usually
ignores data quality issues; it is common, for example, to simply
remove tuples with missing values from the data before exper-
imentation [12], [13]. Moreover, existing data-centric work on
fairness either focuses on coverage (e.g., under-representation)
at training time [8], [14], [15] (and not on repairing erroneous
tuples), or it introduces synthetically-generated errors only [16],
[17], [18], making it difficult to judge how representative the
results are of real world settings.

Why should we care about fairness at the data cleaning stage?
A data error — and it’s subsequent repair — is a purely technical
conception. However, the mechanisms that lead to data errors,
specifically in social domains where the data is of and about
people, are not purely technical in nature. There exist powerful
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social, political and legal systems that affect people’s outcomes,
as well as how data about these outcomes is collected, curated
and shared. An accessible way to think about this is through the
data-mirror metaphor [1]: data is a reflection of the world. A
reflection cannot by itself tell us whether and why it is distorted.
We must instead make assertions about the world, and then
examine whether the data is a faithful reflection of the world,
or whether it is distorted. Hence, data cleaning approaches that
fail to take into account broader normative thinking and that
narrowly focus on the statistical properties of the data itself will
be sub-optimal, in that they will fail to detect and correct for
real-world mechanisms that cause data errors.

Further, fairness is swiftly becoming a major desideratum in
ML systems alongside accuracy [19], [20], [21]. In this work
we take a group fairness perspective, namely, that unfairness
is quantified by the disparity in model performance aggregated
over socially privileged and disadvantaged groups, respectively.
From a purely technical perspective, model unfairness is an
indication that the model does not perform “equally well” on all
parts of the input space. Hence, even absent any ethical/moral
justification, a data intervention (such as cleaning) that results
in disparate model performance (unfairness) is problematic.

Why is it difficult to study the effect of data cleaning on
fairness? A major challenge in studying the impact of automated
data cleaning on model fairness is that there is no “clean”
ground truth available for datasets that are commonly used for
ML fairness research. This means that there is no “correct”
benchmark against which we can evaluate the performance of
error detection and data repair/cleaning techniques.

Furthermore, such datasets are hard to clean manually, in part
because validating data errors would require access and corrob-
oration through secondary data sources (such as bank records or
medical files), which is expensive and time-consuming. More
importantly, datasets for fairness-related research are by defini-
tion at the person-level — this is data of people, from critical
domains such as finance or healthcare. There are significant
legal and ethical privacy challenges to collecting, maintaining,
and sharing such data. For example, requirements for data
deletion in the case of withdrawn consent in the European
Union is dictated by the General Data Protection Regulation
(GDPR).

Even for popular datasets from the research ecosystem —such
as the ones used in this study — it is infeasible to obtain “ground
truth” information regarding data errors. This is because samples
are usually de-identified before release (to maintain privacy) and
so there is no way to map a tuple in the dataset to a person
in the real world. Further, as a systemic issue, the origin and
provenance of fairness datasets is poorly understood [22], [23].

For these reasons, rather than attempting to directly quantify
data quality, we focus on automated data cleaning in this work.

Research Questions: We tailor our research questions to ad-
dress two common stages of automated data cleaning: (1) error
detection, which flags potentially erroneous tuples, and (2) data
repair, which attempts to correct the erroneous tuples:

® RQI: Does the incidence of data errors track demographic

group membership in ML fairness datasets?

® RQ2: Do common automated data cleaning techniques

impact the fairness of ML models trained on the cleaned
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To address RQ1, we analyze the tuples flagged by common
error detection strategies in five widely used fairness bench-
mark datasets, with respect to groups based on sex, race, and
age (Section III). To address RQ2, we conduct an empirical study
of the impact of data cleaning on model fairness (Section V),
by applying common automated data cleaning techniques to
the potentially erroneous tuples detected in RQI. We consider
single-attribute group definitions as well as intersectional def-
initions with multiple sensitive attributes. Our study involves
training and evaluating more than 26,000 models and, in contrast
to existing work, does not inject synthetic noise but works with
the raw data as provided.

Key Findings: We summarize our key findings in the
following.

e We find that higher rates of missing values are associated
with membership in historically disadvantaged groups.
However, for other types of data errors, we do not find
sufficient evidence that poor data quality tracks demo-
graphic group membership, both with single-attribute and
intersectional group definitions (Section III).

® We find that cleaning missing values is unlikely to have a
negative impact on accuracy, but is likely to cause unfair-
ness at the single-attribute level. Interestingly, however, we
also find that cleaning missing values improves fairness
in outcomes for intersectional groups, underscoring the
need to select fairness definitions — here, how we define
protected groups — carefully, based on the specific context
of decision-making (Section V).

e We find that automated cleaning of outliers is very likely
to worsen accuracy and have an insignificant impact on
fairness. Further, when it does impact fairness, it is more
likely to worsen fairness than to improve it — at the
group level for single-attributes and by causing in-group
unfairness for intersectional groups (Section V).

e We find that repairing label errors is very likely to have a
strong effect on both accuracy and fairness. Accuracy is
improved in most cases, while the direction of impact on
fairness (positive or negative) is highly metric specific. For
single-attribute groups, cleaning label errors is very likely
to improve fairness according to the equal opportunity
measure, but worsen fairness according to the predictive
parity measure, and these effects are even stronger for
intersectional groups (Section V).

Our findings are significant because they potentially implicate
many production ML systems. The observed effect varies based
on dataset, fairness metric, group definition, and type of error
being repaired. Notably, in many cases, we do not encounter
a configuration that simultaneously improves both fairness and
accuracy (Section V). In Section VI we outline which cleaning
techniques, error detection strategies and ML models turned out
to be the best performing with respect to fairness and accuracy
in our study.

We discuss the implications of our findings, and outline
research challenges and directions for follow-up work in Sec-
tion VII. We provide the code and results for our study, and
experiments for reproducibility and follow-up research.

Thttps://github.com/amsterdata/demodq
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TABLE I
DATASETS FOR OUR EXPERIMENTAL STUDY

name source number of tuples sensitive attributes
adult census 48,844 sex, race

folk census 378,817 sex, race

credit finance 150,000 age

german finance 1,000 age, sex

heart healthcare 70,000 sex, age

II. PRELIMINARIES

Benchmark Datasets: We use five publicly available datasets
listed in Table I from three source domains: census, finance,
and healthcare. These datasets are commonly used in research
on responsible machine learning and data management [7], [8],
[12], [23]. Each dataset is associated with a binary classification
task. In our setup, the positive class always corresponds to the
desirable outcome for the individuals in the dataset, such as
being considered creditworthy or being prioritized for access to
healthcare resources. Note that the choice of sensitive attribute(s)
is taken from existing research on these datasets [7], [8], [12],
[23].

The adult? dataset contains demographic and financial data,
and the target variable denotes whether a person earns more than
50,000 dollars per year. This dataset has been used extensively
to evaluate fairness in predictions of credit-worthiness. Recent
work proposes to “retire” this dataset due to both unclear data
origins and the apparent — and unrepresentative — class-label
imbalance, which renders the prediction task unrealistic [23]. We
include this dataset in our study to complement these concerns
from the data management perspective, exposing additional data
quality issues.

The folk? dataset is based on US census data and has been
proposed as a replacement for the problematic adult [23]
dataset, to be used for financial decisions. We use the subset
of the data from the census in California in 2018, and replicate
the prediction task from adult.

The credit® and german’® datasets contain financial infor-
mation, and the target variable denotes whether a person has a
good credit score. We remove the foreign_worker attribute
from the german dataset, due to unclear semantics. According
to the documentation of the data, more than 96% of the records
would belong to foreign workers. This interpretation is likely
due to an error, and the attribute is handled differently in other
derived versions of the dataset. We derive the sex attribute
for the german credit dataset from the personal_status
attribute, which encodes each unique combination of marital
status and sex.

The heart® dataset consists of patient measurements with
respect to cardiovascular diseases, and the target variable de-
notes the presence of a heart disease. This dataset has been used
to evaluate fairness of predictive tasks that allocate access to
priority medical care for individuals.

Zhttps://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/zykls/folktables
“https://www.kaggle.com/c/GiveMeSomeCredit
Shttps://archive.ics.uci.edu/ml/datasets/statlog+(german-+credit+data)
Ohttps://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
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Protected Groups: We investigate disparities with respect to
sensitive attributes based on which unlawful discrimination in
decision-making has been observed [1], e.g., violating US labor
law [24] or European non-discrimination law [25].

Single-Attribute Groups: Given a sensitive attribute, we par-
tition the data into tuples belonging to a privileged group and all
other tuples as belonging to a disadvantaged group. Following
prior work [7], [8], [12], [23], [26], we consider sex (with ‘male’
as the privileged group), race (with ‘white’ as the privileged
group) and age (with people older than 30, 25 and 45 years old
as the privileged group in the credit, german and cardio
datasets, respectively). Note that which demographic group is
considered privileged versus disadvantaged is task-specific, and
is designated as appropriate for the benchmark datasets and tasks
described here. For example, older age is considered privileged
in the context of lending, but disadvantaged in the context of
hiring.

Intersectional Groups: Intersectionality [27] is the idea that
interlocuting axes of discrimination give rise to a social experi-
ence that cannot be understood in terms of single-axis effects.
Crenshaw [27] writes: “Focusing on the most privileged group
members marginalizes those who are multiply-burdened and
obscures claims that cannot be understood as resulting from
discrete sources of discrimination.” A famous example is the
Gender Shades project [28], which showed that facial recog-
nition software performs significantly worse on Black women
than on other social groups.

We consider the intersection of sex and race in the adul t and
folk dataset (with ‘white, male’ as the intersectionally privi-
leged group and ‘black, female’ as the disadvantaged group), the
intersection of sex and age inthe german and heart datasets
(with ‘male, over 25’ and ‘male, over 45’ as the intersectionally
privileged group, and ‘female, under 25’ and ‘female, under 45’
as the intersectionally disadvantaged group, respectively). The
credit dataset does not include an additional demographic
attribute and is therefore left out of this analysis. Note that
unlike the single-attribute groups, our chosen intersectional
group definitions do not induce a partition over the full dataset,
i.e., we exclude tuples that are privileged along one axis and
disadvantaged along another.

Fairness Metrics: In our experimental study, we report the
following group fairness metrics:

® Predictive Parity (PP) is satisfied if a classifier has equal

precision for the subjects in the privileged and disadvan-

. .. T Ppiv
taged groups. This metric is computed as TPt FPmy
T Pyis

TP PP and denotes equal probability of a correct
positive prediction for the groups.

® FEqual Opportunity (EO) is satisfied if a classifier has
equal recall for the subjects in the privileged and

disadvantaged groups. This metric is computed as
TPpri\' _ TPdi,
T Pyriv+F Npriy T Pyis+F Nyis ©

The choice of a particular group fairness metric always in-
volves a value-based decision [29]. In line with existing re-
search [13], we choose these metrics from dozens of existing
fairness metrics because they intuitively represent the opposing
interests of two key stakeholders in many decision making
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processes — individuals who seek access to resources, and
vendors who grant access. For example, in lending, the bank,
on the one hand, wants high precision (to avoid giving loans to
creditors who might not have the means to repay them), while
customers, on the other hand, want high recall (to avoid being
denied a loan that they would have been able to repay).

In addition, we report results for Demographic Parity (DP),
which aims for the same positive prediction rates between groups
(independent of the historical outcome distribution captured
in the training data). This metric assumes no intrinsic differ-
ences between the groups, which may not always be realis-
tic, e.g., when making decisions about medical prioritisation

for different age groups. Demographic parity is computed as
T Pyriv+F Ppriy _ T Pyis+ F Pyis
T Pyriv+F Ppriv+T Npriy+F Npriy T Pyis+F Pais+T Nais+F Nais ©

Error Detection Strategies: We apply common error detection
strategies that have been proposed in the data cleaning litera-
ture [3], [30], [31] and are also used in studies about the impact
of data cleaning on machine learning tasks [5].

Missing Values: We identify tuples withmissing values
by detecting NULL and NaN values in the datasets.

Outliers: We detect numerical outliers with the following
techniques: (i) outliers-sd — we consider a value of a col-
umn to be an outlier if it is more than n standard deviations away
from the mean of the column (with n = 3); (ii) outliers-
1igr — we consider a value of a column to be an outlier if it lies
outside of the interval [pes — k - iqr, p75 + & - iqr] with k& = 1.5.
Note that iqr refers to the inter-quartile range defined as the
difference between the 75th and 25th percentile of the column
distribution: iqr = p75 — pas; (#44) outliers-if —atupleis
considered to be an outlier if it is identified as such by an iso-
lation forest trained on the data with a contamination parameter
of 0.01. Note that outliers-sd and outliers-iqgr are
univariate techniques that inspect individual attributes, while the
multivariate approach outliers-1if inspects whole tuples.

Label Errors: An ML-specific type of error is mislabeled ex-
amples: tuples with the wrong prediction label assigned to them.
Such errors have recently received a lot of attention, due to the
fact that they are pervasive in widely used benchmarking datasets
for ML [32]. We detect tuples with potential label errors
with the cleanlab [33] library, using a logistic regression model
as the base classifier. Cleanlab identifies label errors in datasets
by estimating the joint distribution between noisy (given) labels
and uncorrupted (unknown) labels.

Limitations: Unfortunately, there are no known integrity con-
straints available for the datasets (e.g., in the form of functional
dependencies or denial constraints [34]) and no verified sets of
clean records, which prevents us from applying more advanced
cleaning and error detection techniques such as HoloClean [35],
HoloDetect [36] or kNN-Shapley [37]. We consider it an
interesting avenue for future work to include these approaches
on appropriate datasets and tasks.

Automated Repair Methods: We apply standard techniques
for repairing erroneous tuples, which are implemented in pop-
ular data science packages such as scikit-learn’ or pandas, and

"https://scikit-learn.org/stable/modules/generated/sklearn.impute.
SimpleImputer.html
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used in existing studies on joint cleaning and learning [5]. We
apply several methods to impute missing values, namely, via the
column mean, median or mode for numerical columns, and via
the mode or a constant “dummy” value for categorical columns.
We repair outlier values in numerical columns by replacing them
with the mean, median or mode of the column. We repair label
errors by flipping the labels of flagged tuples.

III. INDICATIONS OF DEMOGRAPHICALLY DISPARATE DATA
QUALITY ISSUES

To address RQI, we search for cases in which our error
detection strategies flag significantly different fractions of the
privileged and disadvantaged groups, based on sex, race and
age. For a dataset D, let the Boolean predicate priv(t) evaluate
if tuple ¢t € D belongs to the privileged group. Further, let the
Boolean error function o (t) evaluate if ¢ is considered erroneous
by detection strategy o.

To identify statistically significant disparities, we compute
the number of erroneous tuples |{t € D |priv(t) A o(t)}| from
the privileged group, the number of erroneous tuples |{t €
D | —priv(t) A o(t)}| from the disadvantaged group, and con-
duct a G? significance test with a threshold of p = .05. We
report only cases that pass this test. We run the error detectors
to identify data quality disparities among the protected groups
described in Section II, and report the results for single-attribute
and intersectional group definitions in Figs. 1 and 2, respectively.

Results: We find that all three data error types (missing values,
outliers and label noise) are frequently detected in the research
datasets.® These errors are flagged in disparate proportions for
different datasets and protected group definitions, and, strik-
ingly, error detection strategies often identify large fractions of
erroneous tuples (e.g., up to 51% of the tuples of a particular
group). Notably, adul t — one of the most widely used datasets
in fair ML — is the only dataset for which all five error detectors
flag tuples with significant disparities, for both single-attribute
and intersectional group definitions. We interpret this as addi-
tional evidence that it is time to “retire” adult [23].

Disparities in Missing Values: We find that tuples from the
disadvantaged group are subject to missing data more fre-
quently: in 4 out of 6 cases (dataset/sensitive attribute pairs)
with single-attribute group definitions, and in 2 out of 3 cases
with intersectional group definitions.

Disparities in Outliers: We see a mixed picture with respect to
outliers, where the trends vary strongly based on detection tech-
nique and group definition (single-attribute or intersectional).
There are several cases where we encounter disparate propor-
tions of outliers with only a particular detection technique but
not with others. Additionally, we find that the number of outliers
detected heavily varies based on the applied detection strategy.

Disparities in Predicted Label Errors: For label errors, we
find that, in the majority of cases (for both single-attribute and
intersectional group definitions), the fraction of tuples from
the privileged group in the mislabeled data is higher than the
fraction of tuples from the disadvantaged group. (Recall that

8Note that the heart dataset has no missing values at all.
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Fig. 1.  Single-attribute analysis: Proportions of tuples flagged by common error detection strategies for the privileged and disadvantaged groups.
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Fig.2. Intersectional analysis: Disparate proportions of tuples flagged by common error detection strategies for the intersectionally privileged and intersectionally

disadvantaged groups.

these labeling errors are predicted, and that we do not have
access to the ground truth.) We drill in on the type of label
error — false positive or false negative — and find no significant
differences between the privileged and the disadvantaged groups
in most cases. However, in one case (single-attribute groups in
the heart dataset) the fraction of false positives was signifi-
cantly higher for the privileged group than for the disadvantaged
(57.7% versus 52.2%, respectively), and the trend was reversed
for the false negatives (42% versus 47.8%, respectively). This is
potentially problematic, because false positives can amplify the
advantage, while false negatives can exacerbate the disadvantage
for the respective groups.

Discussion: Overall, while we do find strong indication of a
large number of data quality issues in benchmark datasets, we
do not find sufficient evidence that these potential data errors
track demographic group membership with respect to sex, race
and age. In the folk and heart datasets, overall, errors are
detected more frequently in the disadvantaged group, but the
disparity in errors between groups is small. In the credit
and german datasets, where the disparity in the incidence of
errors across groups is large, errors do not systematically occur

more frequently for the disadvantaged group. Interestingly, the
fraction of detected errors is comparable across groups, irrespec-
tive of whether groups are defined based on a single-attribute
(Fig. 1) or intersectionally (Fig. 2). This finding is consistent
with one of two possibilities. The first is that data errors are, in
fact, uniformly distributed across social groups, in which case
the answer to RQ/ is: no, data quality does not track group
membership. The second possibility is that data errors do, in
fact, occur more frequently for some groups than for others, but
the effectiveness of error detection methods is also non-uniform
across groups.

Explicitly missing values are the only error type in our study
where detection is straightforward: a tuple either contains a
NULL or it does not. For outliers and label errors, however, we
cannot tell what fraction of errors have been discovered/missed
because (as discussed in Section I) we do not have access to the
ground truth. Recall that missing values were the only error type
for which we did detect a demographic disparity in data quality.
We posit that the outlier and mislabel detection techniques we
use could be incurring a high number of false negatives, i.e.,
current techniques are only capable of identifying errors caused
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Overview of our experimentation framework. For each experimental configuration (dataset/model/error/repair), we @ split the dataset into train/test sets;

@ save the original raw data as a dirty version and apply the repair strategy to the raw data to generate a repaired version; @ train a classifier on the dirty train data
and another classifier on the repaired train data; @ generate predictions on the dirty test set using the classifier trained on dirty data and predictions on the repaired
test set using the classifier trained on the repaired train data; and @ score each model on accuracy and fairness and compare the scores computed from repaired
data with the scores computed from dirty data to assess the impact of auto-cleaning for this configuration.

by mechanisms that affect the majority (here, privileged) group.
This hypothesis is further supported by the fact the general trend
for detected errors stays the same whether we look at disparities
between single-attribute groups or intersectional groups.

In summary, these results neither support nor conclusively
refute the hypothesis on which we focused under RQ1, namely,
that data from historically marginalized groups is more likely to
be erroneous. This motivates our large-scale empirical study for
a principled answer to RQ2, where we look at the downstream
effect of repairing these errors on model accuracy and fairness
instead.

IV. EXPERIMENTATION FRAMEWORK

We introduce our experimentation framework, before we
detail our empirical study. We extend the existing CleanML
benchmark [5] for joint data cleaning and model training, to
additionally compute fairness metrics for the cleaning impact.
Our goal is to enable fairness-related experimentation with
minimal effort. In order to achieve that, our extension enables
a declarative definition of sensitive attributes per dataset, after
which the benchmarking framework will automatically compute
the corresponding fairness metrics. In this section, we give an
overview of our implementation.

Declarative Definition of Datasets: CleanML already allows
users to declaratively define datasets to experiment on, by spec-
ifying the data location (data_dir), the error_types to
clean, the label to predict and the attributes to hide from
the classifier (Adrop_variables). We extend CleanML with
three additional datasets: folk, heart, and german. We also
add to the dataset definitions the ability to specify privi-
leged_groups present in a dataset. Membership in a priv-
ileged group is defined by a binary predicate on the sensitive
attribute, e.g., that the age of a person is higher than 25. The

declarative definition of the german credit dataset looks as
follows for example:

German = {

"data_dir": "German",

"error_types": [
"missing_values",
"outliers",
"mislabels"

1,

"drop_variables": [
"age",
"personal_status"
"sex",
"foreign_worker"

1,

"label": "credit",

"ml_task": "classification",

"privileged_groups": [
("age", operator.gt,
("sex", operator.eq,

25),

"male")
1y

}

Evaluation Process: Fig. 3 shows how we use the
CleanML framework: for each experimental configuration
(dataset/model/error/repair), we @ split the dataset into train/test
sets; @ save the original raw data as a dirty version and apply the
repair strategy to the raw data to generate a repaired version; ©
train a classifier on the dirty train data and another classifier on
the repaired train data; @ generate predictions on the dirty test
set using the classifier trained on dirty data and predictions on
the repaired test set using the classifier trained on the repaired
train data; and @ score each model on accuracy and fairness, and
compare the scores computed from repaired data with the scores
computed from dirty data to assess the impact of auto-cleaning.

Automated Computation of Group-Wise Confusion Matrices
per Cleaning Technique: During benchmark execution, we au-
tomatically compute confusion matrices (counting the number
of true negative, false positive, false negative, and true positive
predictions) for the privileged and disadvantaged groups, per
cleaning technique. To get insights into intersectional groups, we
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additionally compute the confusion matrices for combinations of
two groups. Our design decision to compute the “raw” confusion
matrices gives us the flexibility to use a broad range of fairness
metrics during analysis, including the commonly-reported group
fairness metrics for binary classification [29].

For example, the following JSON snippet represents the re-
sults for training a logistic regression classifier on the german
dataset with missing values from the training data in numerical
columns imputed with their mean and in categorical columns
with a “dummy” indicator. CleanML already computes gen-
eral metrics for this experiment, such as the accuracy on the
training set (train_acc) and the accuracy of a given clean-
ing technique on the test set, e.g., imputing missing values in
numerical columns with their mean and inserting a “dummy”
indicator for missing values in categorical attributes (im-
pute_mean_dummy_test_acc). For each such cleaning
technique, we automatically compute the confusion matrices for
all definitions of privileged and disadvantaged groups (and their
intersectional combinations) and record the resulting counts.

Reproducibility: A crucial point of experimental work is to
ensure the reproducibility of the results. CleanML already has
a solid foundation for this by making all randomised deci-
sions like dataset splits depend on globally specifiable random
seeds. Furthermore, the framework supports stopping and re-
suming computations, such that it will make sure not to repeat
previously conducted experiments. We implement our exten-
sions to be compatible with the existing design for reproducibil-
ity in CleanML (e.g., we re-use existing splits for computing
fairness metrics).

Alarmingly, while conducting our experimental study, we
identified a severe reproducibility issue in CleanML: the key-
value mapping between the names of the cleaning techniques
and the resulting metric values is randomly reshuffled in some
cases due to a software bug, which leads to unreliable and
non-reproducible results. We fixed this issue in our codebase,
and also contacted the CleanML authors via a bug report in
their repository,” which led to them also addressing the issue.
To additionally verify the reproducibility of our results, we ran
our experimental study with 26,000 model evaluations twice on
identical machines with the same operating system and software
packages, and validated that we obtain the same results from both
runs.

V. IMPACT OF AUTOMATED DATA CLEANING ON FAIRNESS

In the following, we discuss the setup and results of our
empirical study to address RQ2.

Classification Models and Training Procedure: We use three
ML model types, each of which we tune using 5-fold cross-
validation: logistic-regression (Log-reg) with a tuned learning
rate, nearest neighbors (knn) with a tuned number of neigh-
bors, and gradient-boosted decision trees (xgboost) with a
tuned maximum tree depth. During each run, we sample 15,000
records from a given dataset, randomly split these into train and

“https://github.com/chu-data-1ab/CleanML /issues/3
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test set, and evaluate five different model instances (with differ-
ent random seeds for the hyperparameter search) per split. We re-
peat this 20 times per configuration (dataset/model/error/repair),
resulting in the training and evaluation of 100 models per con-
figuration.

Evaluation: For each run, we evaluate the predictions of the
corresponding model (learned on the repaired training set) on an
equivalently repaired test set. We compare these predictions to
the “dirty” baseline predictions of a model, trained and evaluated
on the “dirty” version of the data, as described in Section IV.
We aggregate confusion-matrix values over the samples from
the privileged and disadvantaged groups to compute the fairness
metrics described in Section II.

Error Detection and Repairs: We detect errors and repair
flagged tuples as outlined in Section II.

Missing Values: We apply different variants of missing value
imputation. Note that most classifiers cannot naturally handle
missing values, which requires us to define a modified version
of the data as the ‘dirty’ version. For the ‘dirty’ setup, we
remove tuples with missing values from the training data and
impute them with the mean for numerical columns and dummy
for categorical columns on the test data. Note that one cannot
simply remove tuples with missing values from the data during
prediction in a real-world setup, therefore we have to impute
on the test set as well for consistency. For other types of errors,
missing values have to be removed from the data beforehand.

Outliers: We detect outliers and impute them as outlined
earlier in Section II. In the “dirty” setup, we simply retain the
outliers in both the train set and the test set.

Mislabels: For labeling errors, we run cleanlab for detection
and flip the labels of identified tuples as a repair technique. For
the “dirty” setup, we leave the labels as is in both train and
test set. Note that we never flip labels on the test set, as this
would make the prediction results incomparable with the other
experiments.

Results: We evaluate 26,400 models in total, and compute
a result table from our experiments, where each row contains
the result of a particular configuration with respect to a dataset,
sensitive attribute, fairness metric, model, error type, detection
method, repair method, and indicators for the impact on fairness
and accuracy. The impact on fairness as well as the impact
on accuracy of a configuration can be positive, negative or
insignificant. We determine this by comparing the resulting 100
fairness and accuracy scores from the “dirty”” baseline (with no
cleaning) to the scores from a cleaning configuration (dataset,
sensitive attribute, fairness metric, error, detection, repair). We
leverage a sequence of paired sample t-tests as proposed by
CleanML [5] with a threshold for the p-value of. 05 adjusted by
Bonferroni correction to account for multiple hypothesis tests.

Impact of Repairing Missing Values: The effect of the au-
tomated repair of missing values on predictive parity (PP),
equal opportunity (EO), and demographic parity (DP) for single-
attribute group definitions are reported in Tables II, III, and
IV, and for intersectional groups in Tables V, VI, and VII,
respectively.

Single-Attribute Groups: Repairing missing values is very
unlikely to worsen accuracy (only 13% of the cases), and in
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TABLE II

IMPACT OF AUTO-CLEANING MISSING VALUES FOR SINGLE-ATTRIBUTE
GROUPS, WITH PREDICTIVE PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
;. worse 3.7% (4) 1.9% (2) 16.7% (18) | 22.2% (24)
& insign. | 5.6% (6) 34.3% (37) 7.4% (8) | 47.2% (51)
better 3.7% (4) 7.4% (8) 19.4% (21) | 30.6% (33)
13.0% (14)  43.5% (47)  43.5% (47)
TABLE III

IMPACT OF AUTO-CLEANING MISSING VALUES FOR SINGLE-ATTRIBUTE
GROUPS, WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse 1.9% (2) 157% (17)  19.4% (21) | 37.0% (40)
& insign. | 93% (10)  259% (28)  13.0% (14) | 48.1% (52)
better | 1.9% (2) 1.9% (2)  11.1% (12) | 14.8% (16)
13.0% (14)  43.5% (47)  43.5% (47)
TABLE IV

IMPACT OF AUTO-CLEANING MISSING VALUES FOR SINGLE-ATTRIBUTE
GROUPS, WITH DEMOGRAPHIC PARITY AS FAIRNESS METRIC
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TABLE VII
IMPACT OF AUTO-CLEANING MISSING VALUES FOR INTERSECTIONAL GROUPS,
WITH DEMOGRAPHIC PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
.. worse | 28.0% (53)  5.8% (11) 14.8% (28) | 48.7% (92)
& insign. | 159% (30)  24.3% (46)  7.4% (14) | 47.6% (90)
better 3.7% (7) 0.0% (0) 0.0% (0) 3.7% (7)
47.6% (90)  30.2% (57) 22.2% (42)
TABLE VIII

IMPACT OF AUTO-CLEANING OUTLIERS FOR SINGLE-ATTRIBUTE GROUPS,

‘WITH PREDICTIVE PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
.. worse | 14.8% (16) 0.9% (1) 0.9% (1) 16.7% (18)
& insign. | 287% (31)  25.0% (27) 8.3% (9) | 62.0% (67)
better 4.6% (5) 2.8% (3) 13.9% (15) | 21.3% (23)
48.1% (52)  28.7% (31)  23.1% (25)
TABLE IX

IMPACT OF AUTO-CLEANING OUTLIERS FOR SINGLE-ATTRIBUTE GROUPS,
WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC

accuracy
worse insignificant better accuracy
. Worse 0.0% (0) 0.0% (0) 5.6% (3) 5.6% (3) worse insignificant better
& imsign. | 37% (2)  27.8% (15) 11.1% (6) | 42.6% (23) .. worse | 15.7% (17) 0.9% (1) 16.7% (18) | 33.3% (36)
better | 3.7% (2) 14.8% (8) 33.3% (18) | 51.9% (28) & insign. | 324% (35)  26.9% (29) 6.5% (7) | 65.7% (71)
74% (4)  42.6% (23)  50.0% (27) better 0.0% (0) 0.9% (1) 0.0% (0) 0.9% (1)
48.1% (52)  28.7% (31)  23.1% (25)
TABLE V

IMPACT OF AUTO-CLEANING MISSING VALUES FOR INTERSECTIONAL GROUPS,

‘WITH PREDICTIVE PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse | 0.0% (0) 11.1% (6) 11.1% (6) | 22.2% (12)
& insign. | 74% (4)  204% (11)  222% (12) | 50.0% (27)
better | 0.0% (0) 11.1% (6) 16.7% (9) | 27.8% (15)
74% (4)  42.6% (23)  50.0% (27)
TABLE VI

IMPACT OF AUTO-CLEANING MISSING VALUES FOR INTERSECTIONAL GROUPS,

WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC

accuracy
worse insignificant better
.. worse | 21.2% (40) 1.1% (2) 1.6% (3) 23.8% (45)
& insign. | 21.2% (40)  25.9% (49) 14.3% (27) | 61.4% (116)
better | 5.3% (10) 3.2% (6) 6.3% (12) 14.8% (28)
47.6% (90)  30.2% (57) 22.2% (42)

most cases (approximately 50% of the time) has an insignificant
impact on fairness (based on single-attribute group definitions).
However, when cleaning does have an effect on fairness, the di-
rection of the effect (positive/negative) is highly metric specific:
cleaning missing values is more likely to worsen DP (36.1%)
than to improve it (24.1%) and is even more than twice as likely
to worsen EO (37%) than to improve it (14.8%), but is more
likely to improve PP (30.6%) than worsen it (22.2%).

Recall from Section II that PP measures the disparity in
group-specific precision, whereas EO measures disparity in
group-specific recall. An intervention that marginally improves
PP and worsens EO increases the true positive rate parity, but
worsens the false negative rate parity. This means that the

model ends up allocating fewer positive outcomes (more false
negatives) to the disadvantaged group than the privileged group,
as is seen in the results for DP, where cleaning is more likely to
worsen positive rate parity than improve it.

In summary, for single-attribute group definitions, cleaning
missing values only has an insignificant effect on fairness ap-
proximately half of the times, and when it does has an effect on
fairness, it is likely to worsen it.

Intersectional Groups: The trends for PP and EO flip when
we consider intersectional group definitions instead of single-
attribute groups. Cleaning now affects both metrics in the same
way: it is nearly 10 times more likely to improve PP (51.9%
of the time) than worsen to it (5.6% of the time), and is also
marginally more likely to improve EO (27.8%) than to worsen
it (22.2%). However, it is still nearly twice as likely to worsen
DP (38.9%) than to improve it (22.2%).

Together with the results from binary group definitions, this
is a very interesting finding: cleaning missing values is likely
to worsen fairness at the single-attribute level but to improve
fairness at the intersectional level, according to PP and EO.
However, it fails to improve DP for both single-attribute and
intersectional groups, because the base rates for these subgroups
might be different, thereby making it more difficult to equalize
positive rates, if desired at all.

Impact of Repairing Outliers: The effect of the automated
cleaning of outliers on predictive parity (PP), equal opportunity
(EO), and demographic parity (DP) for single-attribute group
definitions are reported in Tables VIII, IX, and X, and for
intersectional groups in Tables XI, XII, and XIII, respectively.
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TABLE X

IMPACT OF AUTO-CLEANING OUTLIERS FOR SINGLE-ATTRIBUTE GROUPS,
WITH DEMOGRAPHIC PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse | 14.3% (3) 14.3% (3) 19.0% (4) | 47.6% (10)
& imsign. | 9.5% (2) 0.0% (0) 9.5% (2) 19.0% (4)
better | 0.0% (0) 0.0% (0) 33.3% (7) 33.3% (7)
23.8% (5) 143% (3)  61.9% (13)
TABLE XI

IMPACT OF AUTO-CLEANING OUTLIERS FOR INTERSECTIONAL GROUPS, WITH

PREDICTIVE PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse 0.0% (0) 4.8% (1) 0.0% (0) 4.8% (1)
& insign. | 0.0% (0) 0.0% (0) 14.3% (3) 14.3% (3)
better | 23.8% (5)  9.5% (2)  47.6% (10) | 81.0% (17)
238% (5) 143% (3)  61.9% (13)
TABLE XII

TABLE XIV

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

IMPACT OF AUTO-CLEANING LABEL ERRORS FOR SINGLE-ATTRIBUTE GROUPS,
WITH PREDICTIVE PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse | 14.3% (3) 14.3% (3) 19.0% (4) | 47.6% (10)
& imsign. | 9.5% (2) 0.0% (0) 9.5% (2) 19.0% (4)
better | 0.0% (0) 0.0% (0) 33.3% (7) 33.3% (7)
23.8% (5) 143% (3)  61.9% (13)
TABLE XV

IMPACT OF AUTO-CLEANING LABEL ERRORS FOR SINGLE-ATTRIBUTE GROUPS,
WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse 0.0% (0) 4.8% (1) 0.0% (0) 4.8% (1)
& insign. | 0.0% (0) 0.0% (0) 14.3% (3) 14.3% (3)
better | 23.8% (5) 9.5% (2) 47.6% (10) | 81.0% (17)
23.8% (5) 143% (3)  61.9% (13)
TABLE XVI

IMPACT OF AUTO-CLEANING OUTLIERS FOR INTERSECTIONAL GROUPS, WITH
EQUAL OPPORTUNITY AS FAIRNESS METRIC

IMPACT OF AUTO-CLEANING LABEL ERRORS FOR SINGLE-ATTRIBUTE GROUPS,
WITH DEMOGRAPHIC PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. worse | 25.0% (3) 8.3% (1) 333% (4) | 66.7% (8)
& insign. | 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
better | 0.0% (0) 0.0% (0) 333% (4) | 33.3% (4)
25.0% (3) 8.3% (1) 66.7% (8)
TABLE XIII

IMPACT OF AUTO-CLEANING OUTLIERS FOR INTERSECTIONAL GROUPS, WITH

DEMOGRAPHIC PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
. Wworse 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
& insign. | 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
better | 25.0% (3) 8.3% (1) 66.7% (8) | 100.0% (12)
25.0% (3) 8.3% (1) 66.7% (8)

accuracy
worse insignificant better
.. worse | 19.0% (4) 14.3% (3) 42.9% (9) | 76.2% (16)
& insign. | 4.8% (1) 0.0% (0) 14.3% (3) 19.0% (4)
better | 0.0% (0) 0.0% (0) 4.8% (1) 4.8% (1)
23.8% (5) 14.3% (3) 61.9% (13)
TABLE XVII

IMPACT OF AUTO-CLEANING LABEL ERRORS FOR INTERSECTIONAL GROUPS,
WITH PREDICTIVE PARITY AS FAIRNESS METRIC

Outlier cleaning is in general not very helpful: it worsens
accuracy in nearly half of the cases. Interestingly, independent
of how groups are constructed (using a single-attribute or inter-
sectionally), automated outlier repair has an insignificant effect
on fairness (close to 60% of the time, for 3 out of 6 metric-group
pairs, and close to 50% otherwise). However, when it does have
an effect, it is far more likely to worsen fairness than to improve
it. For example, for EO on single-attribute groups, cleaning
outliers worsens fairness 48.7% of the time, and only improves it
3.7% of the time. The exception to this trend is the PP measure,
on intersectional groups, where cleaning is marginally more
likely to improve fairness (21.3% of the time) than worsen it
(16.7% of the time). Recall from our discussion on missing value
repair, that improving PP while worsening EO and DP results in
group unfairness. We observe a similar trend here, for the effect
of outlier repair on intersectional groups.

In summary, auto-cleaning outliers is most likely to worsen
accuracy. We attribute this to the high fraction of records wrongly
flagged as outliers, which we already encountered in Fig. 1 of
Section III. Furthermore, outlier cleaning has an insignificant
impact on fairness in the majority of cases. However, when it

accuracy
worse insignificant better
.. worse | 25.0% (3) 8.3% (1) 33.3% (4) | 66.7% (8)
& insign. | 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
better | 0.0% (0) 0.0% (0) 333% (4) | 33.3% (4)
25.0% (3) 8.3% (1) 66.7% (8)
TABLE XVIII

IMPACT OF AUTO-CLEANING LABEL ERRORS FOR INTERSECTIONAL GROUPS,
WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC

accuracy
worse insignificant better
.. Wworse 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
& insign. | 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
better | 25.0% (3) 8.3% (1) 66.7% (8) | 100.0% (12)
25.0% (3) 8.3% (1) 66.7% (8)

does impact fairness, it is more likely to worsen fairness than to
improve it for both single-attribute and intersectional groups.
Impact of Repairing Predicted Label Errors: The effect of
the automated cleaning of label errors on predictive parity (PP),
equal opportunity (EO), and demographic parity (DP) for single-
attribute group definitions are reported in Tables XIV, XV, and
XVI, and for intersectional groups in Tables XVII, XVIII, and
XIX, respectively. Repairing label errors is very likely to have
a strong effect on both accuracy and fairness: Auto-repairing
mislabels improves accuracy in over 60% of the cases, and has an
insignificant effect on fairness in no more than 25% of the cases,
irrespective of fairness metric and group definition. As expected,
fairness according to DP is very sensitive to mislabel repair, since
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TABLE XIX
IMPACT OF AUTO-CLEANING LABEL ERRORS FOR INTERSECTIONAL GROUPS,
‘WITH DEMOGRAPHIC PARITY AS FAIRNESS METRIC

accuracy
worse insignificant better
.. worse | 25.0% (3) 8.3% (1) 41.7% (5) | 75.0% (9)
& insign. | 0.0% (0) 0.0% (0) 25.0% (3) | 25.0% (3)
better | 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
25.0% (3) 8.3% (1) 66.7% (8)

this intervention affects the base rates in the dataset. For both
single-attribute and intersectional groups, auto-cleaning label
errors worsens DP over 75% of the time.

The direction of impact (positive or negative) for PP and EO is
highly metric specific. For single-attribute groups, cleaning label
errors is very likely to improve EO (81% of the times), whereas
for PP, cleaning is more likely to worsen fairness (47.6%) than
to improve it (33.3%). These effects are even more pronounced
for intersectional groups: EO improves in 100% of the cases,
whereas PP is twice as likely to worsen (66.7%) than to improve
(33.3%).

This is the opposite trend to what we observed with missing
value repair: here, cleaning is very likely to improve EO (recall
parity) and worsens PP (precision parity), while improving
accuracy and worsening DP (positive rate parity). This means
that the model trained on clean data becomes less conservative:
false negative rate parity is improved, but false positive rate
disparity increases.

From a moral standpoint this is the opposite concern to the
case of unfairness due to missing value repair: for missing
values, the model trained on clean data was more likely to
withhold positive outcomes from deserving candidates in the
disadvantaged group (worsens EO), thereby creating a positive
rate disparity (worsens DP), whereas for mislabel repair, the
model is more likely to incorrectly distribute positive outcomes
to undeserving candidates in the privileged group (worsens PP),
thereby once again creating a positive rate disparity (worsens
DP).

VI. DEEP DIVE

These results motivate us to look at the impact of automated
cleaning on a more granular level.

For which cases (dataset, error and fairness metric) is clean-
ing potentially beneficial at all? In order to assess whether
it would be possible to carefully choose a beneficial cleaning
technique for a given setting, we analyse for which of the cases
in our study we encounter a beneficial auto-cleaning technique
at all. We define a case as a combination of a fairness metric
—predictive parity (PP), equal opportunity (EO) or demographic
parity (DP), a dataset with a single sensitive attribute, and an
error type (missing values, outliers or label errors), resulting in
60 different cases in total. A promising finding is that for most
cases (53 out of 60), we encounter at least one cleaning technique
which does not worsen fairness. In half of the cases (30 out of
60), there exists a cleaning technique which improves fairness,
while we can improve both fairness and accuracy simultaneously
only in 17 out of 60 cases.
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Which repair and detection techniques produce the most
gains? Next, we focus on configurations with a positive im-
pact on fairness, and analyze the applied detection and repair
techniques in such cases.

For missing values, we do not encounter a dominating imputa-
tion approach for numerical columns. However, for categorical
columns, “dummy”” imputation with a constant value turns out
to be most beneficial for fairness (with fairness improvements
in 35 cases, compared to 18 cases with a different imputation
technique). We attribute this to the fact that dummy imputation
allows the model to identify tuples with missing values and
learn extra parameters for them (which is not the case for mode
and mean imputation). For example, in the folk dataset, the
accompanying datasheet makes it clear that missing values are
typically ‘Not Applicable (N/A)’, based on values in another
column; e.g., Occupation (OCCP) and Class of Worker (COW)
are missing for people with Age (AGEP) less than 18. In this
case, the missing value is actually a special N/A value, and
dummy imputation allows the model to learn such a dependency.

For outlier-repair, which has the worst impact on both fairness
and accuracy, we observe no noticeable differences between
the repair techniques. However, we find slight differences when
analyzing the detection techniques. Cleaning outliers detected
via the interquartile rule (outliers-igr) has a negative
impact on fairness in 41.66% of the cases (compared to 28.33%
for detection with the standard deviation rule (outliers-sd)
and 35% for detection with an isolation forest (outliers-
if)). This likely due to the high fraction of records wrongly
flagged as outliers, which we already encountered in Fig. 1 of
Section III.

Impact on single-attribute groups compared to intersectional
groups: We summarise our findings from the previous sections,
regarding the impact of automated data cleaning on fairness
for single-attribute and intersectional group definitions. As dis-
cussed in Section III, we observe a comparable fraction of
detected errors for single-attribute and intersectional groups,
but could not conclusively support or refute the hypothesis that
data from historically marginalised groups is more likely to
be erroneous. When zooming in on different automated repair
methods and fairness metrics (Section V), we find varying effects
between the group definitions. For missing value imputation,
the direction of the impact on fairness is different per metric for
single-attribute groups, but the same for intersectional groups.
Automated outlier repair has an insignificant effect on fairness
and a negative effect on accuracy, independent of the group
definition. Label repairs have a strong effect on both accuracy
and fairness, and the direction of the impact on fairness is
dependent on the fairness metric, but independent of the group
definition, even though we observe a stronger effect for inter-
sectional groups. We conclude that it is important to consider
both single-attribute and intersectional group definitions when
analysing the impact of data cleaning on accuracy, fairness, and
the trade-offs between them.

Model Choice: We also investigate the influence of the choice
of ML model on the impact on fairness and accuracy. The highest
accuracy over all tasks is provided by the logistic regression
model (1log-reg). Itis only outperformed by gradient-boosted
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TABLE XX
SINGLE-ATTRIBUTE ANALYSIS: IMPACT OF AUTO-CLEANING ON ACCURACY
AND FAIRNESS FOR DIFFERENT ML MODELS ON 318 CONFIGURATIONS IN

TOTAL
auto-cleaning makes
fairness worse | fairness better | fairness & accuracy
model better
xgboost 24.8% (79) 13.8% (44) 4.7% (15)
knn 32.1% (102) 13.5% (43) 7.9% (25)
log-reg 24.5% (78) 15.7% (50) 6.9% (22)

We list cases where fairness gets worse, fairness gets better, and where both fairness
and accuracy get better. Auto-cleaning is more likely to worsen than to improve fairness
across all models.

decision trees (xgboost) for outliers on folk and heart, as
well as for missing values on adult and folk. Apart from
that, we find that all models perform comparably with respect to
the impact of auto-cleaning on the fairness of their predictions
(Table XX). In the majority of cases, this impact is insignificant,
however, if there is an impact, auto-cleaning is more likely to
worsen (between 24.8% to 32.1% of the cases) than to improve
fairness (between 13.5% to 15.7% of the cases).

Logistic regression (log-reg) turns out to benefit most
from cleaning in our study, with the largest benefit in fair-
ness (15.7%) and a competitive gain in fairness & accuracy
(6.9%), while xgboost benefits least from cleaning in the
most desirable setting (fairness and accuracy improve in only
4.7% of cases). knn benefits most from auto-cleaning but does
not outperform the other models in terms of accuracy in any
configuration.

VII. VISION: FAIRNESS-AWARE DATA CLEANING

The analysis we conducted in this paper is difficult, primarily
because it requires that we think holistically about disparities
in data quality, disparities in the effectiveness of data clean-
ing methods, and impacts of such disparities on ML model
performance for different demographic groups. Such holistic
analysis can and should be supported by data engineering tools,
but it requires substantial future research. To detect disparities
in data quality, and mitigate the impact of such disparities on
the performance of ML models downstream, we envision the
development of fairness-aware data cleaning methods and their
integration into complex data-intensive pipelines.

Implications for ML in Production: While we did notice that
historically disadvantaged groups are subject to higher rates of
missing values in the majority of cases, we did not find sufficient
evidence of a demographic dependency in data errors. This is
counter-intuitive to a socio-technical framing, which posits that
marginalised groups also appear noisier in the data (have more
data errors), and could embolden data scientists to not worry
about disparate effects along demographic lines when applying
automated cleaning procedures.

However, our second result about the downstream effect of
automated cleaning demonstrates that repairing data errors does,
in fact, distribute gains disparately across demographic groups!
In Section III, we found that automated data cleaning can have
anegative impact on fairness, and was, in our study, more likely
to worsen fairness than to improve it. Furthermore, we showed
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that the positive or negative impact of a particular cleaning
technique depends on the choice of fairness metric and group
definition. These findings are extremely worrying, due to the
potential negative impact on the fairness of decisions made by
many ML systems that are already in production.

The good news is, however, that we encountered at least
one configuration for almost every case (dataset, error type,
cleaning method, fairness metric) that did not negatively impact
the fairness of model predictions. This indicates that we can
— and should — mitigate any potential negative impact of
automated cleaning with the help of a principled methodology
for selecting an appropriate cleaning procedure. Our results
underscore the importance of such a methodology, and motivate
its development.

Open Questions and Research Directions: Our findings indi-
cate that we are either unable to detect demographically-salient
data errors with current approaches, or that current cleaning
procedures are not equally ‘effective’ for different demographic
groups, or — most disturbingly — we are seeing failure modes
in both detection and repair. In order to confirm whether the
disparate proportions of tuples flagged by the error detection
strategies in Section III correspond to actual errors, one would
need to repeat this analysis on a dirty fairness-critical dataset
where the clean ground truth is available. Thus future work on
fairness-aware data cleaning must include additional empirical
evaluation.

Our findings from the study in Section V impose the im-
mediate question of how to choose a cleaning technique that
does not negatively impact fairness. Additionally, we consider
it important future work to analyse whether more advanced
cleaning/error detection techniques [11], [35], [36], which lever-
age additional metadata, impact fairness in a similar way (note
that we had to exclude them from our study due to a lack of
clean example tuples and integrity constraints). Connected to
this, an important long-term research question in fairness-aware
data cleaning is whether it will be sufficient to appropriately
choose from existing cleaning techniques or whether we would
need new fairness-aware cleaning procedures. The selection
of cleaning techniques and model hyperparameters is typically
steered by cross-validation techniques which aim for the highest
accuracy. A promising direction here might be to extend existing
techniques and implementations to adhere to fairness constraints
during the selection procedure. A starting point for designing
new cleaning techniques is the identification of input tuples
with negative impact on fairness, which would then need to
be cleaned in a fairness-enhancing manner. Several techniques
for identifying such tuples have recently been proposed, e.g.,
by computing Shapley values with respect to a given fairness
metric [38] or via causal explanations [13].

A further directions is to focus on the impact of label er-
rors [32] on fairness, for example by adding instance-dependent
synthetic label noise [39] and evaluating the corresponding
cleaning quality of various label repair techniques. Moreover,
it would be interesting to explore whether our observed results
also hold for other notions of fairness, such as individual fair-
ness [40], where the goal is to have similar individuals treated
similarly, and causal fairness [41], where one of the questions is
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whether individuals are being treated differently on the basis of
their membership in a historically-disadvantaged group.

Finally, a limitation of our study is that we mainly worked with
US-centric datasets (which are common in fairness research).
This limitation should be overcome in future work on fairness-
aware data cleaning.
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