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Abstract

This thesis presents the results of applying neural machine translation techniques with

a novel objective function adapted to the task of grammatical error correction. It

demonstrates that placing more importance on grammatical errors than on grammat-

ically correct text during training succeeds in forcing neural machine translation sys-

tems to learn more effectively to correct errors rather than to copy incorrect writing.

More specifically, the use of an edit-based weighted token-level cost function dramat-

ically improves recall as hoped, without compromising precision whatsoever.
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Chapter 1

Introduction

Grammatical error correction (GEC) is the task of automatically transforming text with

potential grammatical errors into grammatically correct text. Although both input and

output text are in the same language, this transformation is similar to the task of trans-

lating text from one language to another, so much of recent work has focused on ap-

plying the same techniques to GEC that have been successful for translation. While

neural machine translation (NMT) techniques have generally outperformed statistical

machine translation (SMT) techniques at translation tasks, the same pattern has not

been the case for GEC. GEC systems trained using standard NMT methods tend to

have low recall, i.e. they learn to copy instead of correcting grammatical errors; con-

sequently, SMT systems remain more effective for GEC. The goal of this project is to

improve recall using NMT for GEC.

A key difference that sets apart GEC from MT is that part or all of the input text

can be identical to the corresponding output text; not only are both texts in the same

language but most input text is error-free in practice (see section 3.3.2 for frequency of

grammatical errors in commonly used GEC datasets). An unfortunate consequence is

that out-of-the-box NMT techniques result in GEC systems that learn to copy instead

of correcting grammatical errors, resulting in poor recall.

Recall, defined as the number of true positives over true positives and false nega-

tives, is a measure intended to capture a high incidence of false negatives. In gram-

matical error correction, false negatives occur when a system fails to detect and correct

grammatical errors and instead simply copies the input text.

Perhaps this issue has been neglected in recent research due to the fact that the

standard metric for the past few years is an F0.5 score, which places twice the im-

portance on precision as on recall; the idea behind it is that producing output that is

1



2 Chapter 1. Introduction

unchanged and equally ungrammatical to the input is preferable to producing output

that is changed and more ungrammatical. In this project we focus particularly on recall

instead of this F0.5 score. We hypothesise that applying a higher cost to grammatical

errors during training will prevent the system from learning to copy and will improve

its recall.

After modifying the default training objective to relatively punish missed gram-

matical errors more than unnecessary edits, we successfully forced several models to

learn to correct grammatical errors. In general, the greater the relative emphasis, the

greater the improvement in recall. As an added bonus, we found that far from sacrific-

ing any precision, our approach ended up improving it as well, proving our strategy an

unequivocal success.

The remainder of this document is as follows: Chapter 2 surveys the evolution

of recent GEC work, including the development of the task-specific MaxMatch scor-

ing framework. It outlines the methods of phrase-based SMT and NMT and reviews

work that has applied these approaches to GEC. Chapter 3 summarises the model ar-

chitecture used in all of our experiments; training hyperparameter values, the original

and modified objective function, convergence criterion; datasets used in this work and

commonly in GEC; as well as the tools used in this work. Chapter 4 compares the

results of baseline models against models with varying values of the novel training hy-

perparameter, edit weight. Finally, chapter 5 concludes with further observations and

suggestions for future work.



Chapter 2

Background

As described in the research proposal for this project, several GEC shared tasks at the

beginning of this decade led to significant advances in research: the Helping Our Own

(HOO) shared tasks in 2011 and 2012 (Dale and Kilgarriff, 2011; Dale et al., 2012),

and the shared tasks at the 17th and 18th conferences on Computational Natural Lan-

guage Learning (CoNLL) in 2013 and 2014 (Ng et al., 2013, 2014). In this timeframe,

a new task-specific scoring framework was developed (Dahlmeier and Ng, 2012) and

the spotlight shifted from highly linguistically motivated and error-specific classifiers

and rule-based methods to more generalized machine translation techniques. Error-

specific approaches, while they require more linguistic expertise and model complexity

to achieve full coverage of grammatical error types, have the advantage of performing

particularly well on the specific error types they target. On the other hand, statisti-

cal machine translation (SMT) methods have achieved state-of-the-art results on GEC,

capturing complex interactions between different error types without requiring the in-

dividual construction of as many component models. Some have even attempted to

combine the advantages of each technique with hybrid systems (Susanto et al., 2014;

Rozovskaya and Roth, 2016).

Meanwhile, machine translation (MT) has experienced its own revolution, from the

advent of neural machine translation (NMT) methods around 2013 and 2014 (Kalch-

brenner and Blunsom, 2013; Cho et al., 2014b,a; Sutskever et al., 2014) to their adop-

tion by Google and Microsoft last year (Wu et al., 2016). While many GEC researchers

have continued to improve the performance of phrase-based SMT (Junczys-Dowmunt

and Grundkiewicz, 2016; Chollampatt et al., 2016) and hybrid classifier-SMT systems

(Susanto et al., 2014; Rozovskaya and Roth, 2016), those pioneering the application of

NMT methods to GEC (Xie et al., 2016; Yuan and Briscoe, 2016) have not been able to

3



4 Chapter 2. Background

meet the state-of-the-art performance according to the accepted scoring method using

the MaxMatch scoring framework, presented in the next section.

2.1 MaxMatch Scorer

Establishing a standard evaluation metric is key to building on prior work and making

progress on any research topic. The way that GEC systems have been evaluated in most

recent work can be broken down to two components: first, a method to align a pair of

sentences and extract the edits necessary to transform the given input to the given

output; second, a scoring function based on Levenshtein edit operations (insertion,

deletion, and substitution) to assess the accuracy of the transformation, typically an F

score between the extracted edits and a set of gold standard edits.

2.1.1 Alignment

There is often more than one way to align two sentences and identify a set of edits

that represent their differences. There can be more than one possible set of token-level

edits leading to the same resulting sentence, but there can also be phrase-level edits on

top of these, resulting in some ambiguity around which system edits to feed into the

scoring function.

Dahlmeier and Ng (2012) illustrate the problem with an example from the 2011

HOO shared task:

Source Our baseline system feeds word into PB-SMT pipeline.

Hypothesis Our baseline system feeds a word into PB-SMT pipeline.

Table 2.1: Example of ambiguous edit extraction from HOO 2011: is the edit an insertion

of the token a, the substitution of the token word with the phrase a word, or something

else?

The official evaluation script of the shared task extracts the edit ε→ a, while the

gold standard annotation is word→{a word, words}. Even though both edits could

produce the same output string, there is no overlap between the extracted system edit

and the gold standard edit choices, so the hypothesis is considered incorrect.
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To solve this problem, Dahlmeier and Ng (2012) designed the MaxMatch (M2)

scoring system to choose from ambiguous system edit possibilities in order to max-

imize the overlap between system and gold standard edits. The M2 scorer first con-

structs an edit lattice by filling in a matrix with the Levenshtein distances between

substrings of the tokenised input and output and computing all shortest paths through

the matrix that transform the input sentence into the system output. Table 2.2 depicts

the Levenshtein matrix between source i studying informatic . and hypothesis

i am studying informatics .

i am studying informatics .

0 1 2 3 4 5

i 1 0 1 2 3 4

studying 2 1 1 1 2 3

informatic 3 2 2 2 2 3

. 4 3 3 3 3 2

Table 2.2: Levenshtein matrix between i studying informatic . and i am

studying informatics .

The shortest paths are represented as a graph with each node corresponding to a

cell from the Levenshtein matrix and each edge corresponding to an edit operation:

insertion, deletion, substitution, or no change. Since GEC data annotations some-

times include phrase-level like studying→ am studying for the example above, the

alignment framework should also allow some phrase-level edits in which some words

remain unchanged. However, it should do so within reason, without allowing edits

spanning long sequences in which many words remain unchanged, so the number of

permitted unchanged words in an edit is limited by a parameter (a reasonable default

is 2). These additional edits are added to the edit lattice as new edges that combine

adjacent existing edges, as illustrated in 2.1.

2.1.2 Edit Extraction

Based on this edit lattice, the M2 scorer chooses the complete set of edits from input to

output which maximally match the set of gold standard edits. Matches are defined as

any edit with the same start and end position in the input sentence and with proposed

correction included in the gold standard correction.
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(0,0) (1,1) (1,2) (2,3) (3,4) (4,5)
i am

studying/am studying

studying

informatic/

informatics
.

Figure 2.1: Edit lattice from source i studying informatic . to hypothesis i am

studying informatics .

2.1.3 Scoring Function

Initially, GEC researchers continued using F1 as the scoring function with the results

of M2 alignment and edit extraction, but beginning with CoNLL-2014, it became stan-

dard to use the F0.5 score (for reasons mentioned in chapter 1), and M2 score became

synonymous with M2 edit extraction followed by F0.5 score.

2.2 GEC Approaches

We can look to the CoNLL shared tasks of 2013 and 2014 to sample the range of

possible approaches to GEC. These shared tasks not only popularised the M2 scoring

framework but also introduced datasets that would continue to be used commonly in

GEC research to this day.

2.2.1 Classifiers

One of the most popular approaches among submissions to CoNLL-2013 was error-

specific machine learning classifiers, one for each of the five grammatical error types

included in the task. Five of the submissions were systems based on maximum en-

tropy; others used Naive Bayes, SVMs, perceptrons, and other classifiers. The system

with the best F1 score on the test set (42.14%) consisted of a multi-class averaged per-

ceptron for article or determiner errors, and Naive Bayes for the remaining error types

(preposition, noun number, verb form, and subject-verb agreement errors).

Machine learning classifiers remained a common approach in the CoNLL-2014

submission, though almost always in combination with other approaches so as to in-

crease coverage of the 28 error types included in the task. The second best F0.5 score on

the test set (26.79%), in spite of handling only nine of the 28 error types, was achieved



2.3. The Machine Translation Approach 7

by a system using “different combinations of averaged perceptron, Naive Bayes, and

pattern-based learning trained on different data sets for different error types” (Ng et al.,

2014).

2.2.2 Rule-Based

Four CoNLL-2013 submissions were rule-based classifiers and two hybrid systems

included rule-based components in a pipeline with other methods. CoNLL-2014 sim-

ilarly included rule-based approaches, but usually mixed with other approaches. The

highest F0.5 score achieved in CoNLL-2014 (37.33%) was by a system using rule-

based classifiers as a first pass, followed by four steps of ranking hypotheses based on

language model probabilities, statistical machine translation, LM ranking again, and

type filtering. Hand-crafted rules require extensive linguistic domain expertise Need-

less to say, purely rule-based techniques no longer appear among the best performing

GEC systems.

2.2.3 Language Models

As mentioned for the best performing submission to CoNLL-2014, using language

model probabilities to rank hypotheses is another approach, often implemented as a

component in a more complex system. It conveniently does not require an annotated

grammatical error correction corpus to train an n-gram language model, simply a cor-

pus of grammatically correct text. The result is a way of not only possibly generating

new grammatical hypotheses but also comparing their correctness to the source sen-

tence to ensure an improvement.

2.3 The Machine Translation Approach

When CoNLL-2014 increased coverage from five to 28 error types, systems based

on error-specific approaches like machine learning and rule-based classifiers became

somewhat less practical to build and a larger portion of submissions turned to machine

translation techniques, which frame GEC as the translation of ungrammatical text into

grammatical text.

In this section, we use the usual MT terminology of translating a foreign/source

sentence f into an English/target sentence e, except in GEC both source and target
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are in English and the source sentence f may have grammatical errors while the target

sentence e has none.

2.3.1 Statistical Machine Translation

The problem of statistical machine translation can be posed using the noisy channel

framework and Bayes’ Rule as finding the most likely translation ê for a sentence f in

a foreign language:

ê = argmax
e

p(e| f ) = argmax
e

p(e)p( f |e) (2.1)

This formulation breaks the system down to two components: a language model p(e)

and a translation model (or conditional language model) p( f |e). As the probability

of a particular sequence of words occurring in a particular order, the language model

represents how correct the target sentence is. Zens et al. (2002) further breaks down

the translation model into a lexicon and an alignment model.

In word-based SMT, the translation probability p( f |e) can be represented with an

optional sentence length probability, in addition to lexicon probabilities and alignment

probabilities:

p( f |e) = p(J|e)∑
a

J

∏
j=1

[p( f j|ea j)p(a j|a j−1, I,J)] (2.2)

where J and I are the lengths of the source and target sentences f and e, respectively,

and a j is the index of the target word aligned to source word f j. The lexicon proba-

bility p( f j|ea j) is the probability that source word f j translates to target word ea j . The

alignment probability p(a j|a j−1, I,J) is the probability that the position of source word

f j maps to the position of target word ei, given the alignments of previous words in the

source sentence and the lengths of the source and target sentences.

In phrase-based SMT, the segmentation of the sentence pair into K phrases is an

additional hidden variable B. Assuming all segmentations have the same probability

and allowing only monotone translations:

p( f |e) =
K

∏
k=1

p( fk|ek) (2.3)

where each phrase translation probability p( fk|ek) is estimated by its relative fre-

quency:

p( fk|ek) =
N( fk,ek)

N(ek)
(2.4)
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These are counts in the training corpus: N(ek) is the number of times the phrase ek oc-

curred, N( fk,ek) the number of times fk appeared as a translation of ek. Once counted

(trained), these estimated probabilities are looked up in a phrase translation table for

decoding.

Combining Equations 2.1, 2.3, and 2.4, as well as a translation model scaling factor

λ (to indicate relative importance of language model and translation model contribu-

tions), the task of monotone translation becomes something more like this:

ê = argmax
e,B

I

∏
i=1

p(ei|e1,e2, ...,ei−1)
K

∏
k=1

p( fk|ek)
λ (2.5)

For non-monotone translations, the task also includes a distance-based phrase re-

ordering (or distortion) probability d (Koehn, 2009):

ê = argmax
e

I

∏
i=1

p(ei|e<i)
λLM

K

∏
k=1

p( fk|ek)
λφd(starti− endi−1−1)λd (2.6)

Each feature has a relative weight λ that must be learned through training.

2.3.1.1 Hybrid Classifier-SMT Systems for GEC

Susanto et al. (2014) surpassed the performance of the best system from CoNLL-2014

using a hybrid system with both error-specific classifiers and SMT. Their best reported

F0.5 score of 39.39% on the test data from CoNLL-2014 resulted from a combination

of four independent GEC systems: two that were pipelines of classifier-based correc-

tion steps of six common error types (spelling errors, noun number errors, preposition

errors, punctuation errors, article errors, and verb form or subject-verb agreement er-

rors) and two that were SMT models. The pipeline systems differed in the order of

the correction steps (swapped noun number and article errors), and the SMT systems

differed in phrase table construction (two phrase tables built from two separate cor-

pora versus one phrase table built from the concatenation of the two corpora). Three

of the six correction steps used classifiers learned from context features for noun num-

ber, prepositions, and articles; two were rule-based classifiers to fix punctuation errors

and subject-verb agreement errors; and the first correction step was the output of an

open source spell-checker (Jazzy), whose output was filtered using language model

probabilities. Neither individual systems nor combinations of one pipeline and one

SMT system each could match the performance of the combination of all four sys-

tems. The recall of the four-part system was 19.14%, but the two pipeline systems

achieved 23.99% and 22.77% individually
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More recently, Rozovskaya and Roth (2016) far surpassed even this performance

with a classifier-SMT model combination that scored 47.40% on the CoNLL-2014 test

set (recall of 25.64%). The classifier used in the final system combination was initially

trained on native data, i.e. a corpus of text assumed to be grammatically correct, then

“tailored” by artificially introducing grammatical error patterns from a learner corpus,

and finally further enhanced by introducing mechanical errors in punctuation, spelling,

and capitalization. By running the classifier’s output through an SMT system trained

on the Lang-8 parallel corpus, they pushed the state-of-the-art to 8 percentage points

more than Susanto et al. (2014).

2.3.1.2 SMT Systems for GEC

The state of the art in GEC at the time of this writing was set by Junczys-Dowmunt

and Grundkiewicz (2016) with an SMT system tuned to the GEC-specific M2 metric,

i.e. the same F0.5 score used to evaluate GEC systems since CoNLL-2014, rather than

to the MT-oriented BLEU score as in Susanto et al. (2014) and Rozovskaya and Roth

(2016).

Tuning to M2 with a standard phrase-based SMT system resulted in an impressive

score of 46.37% on the CoNLL-2014 test data (recall of 25.05%); when augmented

with new GEC-specific features and a large language model trained on the Common

Crawl corpus, the system’s score increased to 49.49% (recall of 27.98%). The GEC

features added onto the standard SMT features include stateless (within phrase) fea-

tures that captured the edits required to transform an input phrase into a candidate out-

put, stateful (phrase context) features that captured the likeliness of a candidate output

phrase in the context of the rest of the output sentence, as well as more fine-grained

features capturing edit operations between source and candidate target sentences. Such

features have not yet been applied in NMT methods for GEC.

2.3.2 Neural Machine Translation

Current neural machine translation techniques attempt to model p(e| f ) directly without

the breakdown of language model and translation model. The general idea behind the

encoder-decoder architecture introduced by Sutskever et al. (2014), Cho et al. (2014b),

and Bahdanau et al. (2014) is to use an RNN to encode the source sentence into a

fixed-length vector, then use another RNN to decode this vector into a target sentence.

Since LSTMs and GRUs are better at capturing long-range dependencies in sequences,
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they are often preferred over vanilla RNNs for tasks such as machine translation.

Bahdanau et al. (2014) proposed an encoder-decoder architecture consisting of a

bidirectional LSTM as the encoder and added an attention mechanism to the decoder

that behaves somewhat like alignment or distortion in phrase-based SMT to provide

a probability distribution over the input positions for any given output position. A

context vector calculated at each output position is a weighted average of the encoded

representations of each input position, where the weights come from performing a

softmax over an alignment model comparing the decoder’s hidden state at the previous

time step with the encoder’s representation at the current time step. This attention

mechanism removes the requirement that the input sequence be encoded as a fixed-

length vector.

The architecture used in Xie et al. (2016) included a similar attention mechanism

in the decoder and a three-layer bidirectional GRU with a pyramid structure as the

encoder to reduce the computational complexity resulting from operating at a character

level.

2.3.2.1 NMT Systems for GEC

Xie et al. (2016) were the first to apply neural machine translation methods to the GEC

task, achieving a score of 40.56% on the CoNLL-2014 test data (recall of 23.77%).

They implemented a character-level encoder-decoder recurrent neural network archi-

tecture with attention and a language model to prune translation hypotheses for beam

search. Their language model was trained on a subset of the Common Crawl corpus,

resulting in 2.2 billion n-grams, only a tiny fraction of the more than 500 billion unique

n-grams available in the full corpus (Buck et al., 2014). This standard NMT architec-

ture was combined with a mechanism for classifying proposed edits as legitimate or

spurious, based on the same understanding mentioned in chapter 1 that it is prefer-

able that a GEC system fail to suggest an edit than that it make a spurious suggestion.

Finally, with data augmentation using two common error types according to error dis-

tribution statistics for the CoNLL-2014 training set, their best model outperformed

Susanto et al. (2014) and set the state of the art at the time.

Yuan and Briscoe (2016) also tried to apply NMT to GEC, outperforming Susanto

et al. (2014) but falling short of the performance of the best system by Xie et al. (2016)

with a score of 39.90% on the CoNLL-2014 test data (did not report recall). Their im-

plementation operated on the word level instead of the character level as in Xie et al.

(2016). However, word-level NMT encounters a problem with handling rare words,
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due to the necessity of restricting the size of the known vocabulary so as to efficiently

perform each word embedding and compute each softmax at the output layer. This

problem is exacerbated in GEC since grammatical errors and spelling mistakes neces-

sarily increase the source vocabulary size and are interpreted as extremely rare words

any time a particular error is not systematic and widespread. To handle such “rare

words”, they aligned unknown target words to their source words using an unsuper-

vised aligner and applied a word-level translation model learned from IBM Model 4

(Brown et al., 1993). However, it seems this approach to handling the rare word prob-

lem may not be as effective as character- or subword-level approach as in Xie et al.

(2016).



Chapter 3

Methods

We used Nematus (Sennrich et al., 2017) to train attentional encoder-decoder networks

with similar architecture to that described in Bahdanau et al. (2014). This chapter lists

implementation details including network and training parameters, the novel weighted

cost function, and the datasets.

3.1 Model Architecture

Like Bahdanau et al. (2014) and Xie et al. (2016), we use a bidirectional RNN as an

encoder. Each input token is represented with the concatenation of the hidden states

of the RNN cells in the forward and backward directions; the result is referred to as an

annotation for the given input token. The Nematus implementation of the decoder is a

modified and simplified version of what Bahdanau et al. (2014) propose: instead of the

decoder hidden states being initialised with the last annotation of the encoder’s back-

ward RNN, they are initialised with the mean of all annotations; maxout is replaced

with tanh in the feedforward hidden layer before the decoder’s softmax layer; there are

no added biases in both encoder and decoder embedding layers; and the order in which

the decoder RNN state updates and generates the next token is switched for a simpler

implementation. For reasons of limited time and computational resources, we limited

both encoder and decoder depths to a single layer, using the Nematus default of GRU

cells (conditional GRU cells in the decoder) instead of LSTM cells as in Bahdanau

et al. (2014).

All models used an embedding layer size of 512, hidden layer size of 1000, layer

normalisation, and dropout (0.1 for the source and target layers, 0.2 for embedding and

hidden layers).

13
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3.2 Training

The following training parameters were left at Nematus default values: maximum

sequence length of 100, Adam optimizer, maximum 5000 epochs (which was never

reached), maximum 10 million updates (minibatches; also never reached), gradient

clipping threshold 1, learning rate 0.0001, maxibatch size 20, cross-entropy objec-

tive function (see following subsection for implementation details on modified cross-

entropy objective), and early stopping patience of 10, with validation every 10,000

minibatches. Batch size used was 60.

3.2.1 Objective Function

Baseline models were trained to minimize the same cross-entropy loss function used

in Xie et al. (2016):

L(x,y) =−
T

∑
t=1

logP(yt |x,y<t) (3.1)

where x is the source sentence and y is the output sentence with T time steps.

3.2.1.1 Edit-Based Weighted Cross-Entropy

As described in the project proposal, in order to improve on recall of error types, we

added a weight to the usual cross-entropy loss function that would multiply the loss

contribution for time steps when the input and target values were different. In other

words, where the learner sentence contained a grammatical error, it was especially

important for the system to learn the correct behaviour; where the learner sentence

was grammatically correct, it was less important whether the system copied the input

or applied an edit.

The weighted cross-entropy loss function used to train more advanced models was

the following:

L(x,y) =−
T

∑
t=1

λ(xt ,yt) logP(yt |x,y<t) (3.2)

where the new weight is a function of the input and output at a particular time step t:

λ(xt ,yt) =

1 if xt = yt

Λ otherwise
(3.3)

We report results on the test set for various values of this weight parameter Λ.
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3.2.2 Implementation

To identify edits, we used the M2 scoring script from the CoNLL-2013 shared task to

align source and hypothesis sentences, producing a binary edit vector with ones in the

positions identified by the aligner as edit words and zeroes in the remaining positions.

This edit vector was passed in as an additional input to the Nematus training script,

along with an edit weight value specifying the coefficient by which the loss of edit

words would be multiplied, i.e. Λ in equation 3.3.

In the following example from the NUCLE dataset (described in section 3.3), the

target tokens that are edits are “cause,” “is,” and “space,” so the corresponding edit

vector will have ones in those positions (indices 7, 11, and 14 with index origin 0) and

zeroes in remaining positions.

Source this will , if not already , caused problems as there are very limited spaces

for us .

Target this will , if not already , cause problems as there is very limited space for

us .

Table 3.1: Example source and target for which edit words are “cause,” “is,” and “space.”

Since cost is calculated over each output token, the edit vector must have the same

size as the output sequence, even when the source and target are of different lengths,

as in the example below. All in all, of the three possible edit operations (aside from

“no edit”), insertions and substitutions result in an output token that we treat as an edit,

whereas deletions result in no output token and therefore no output loss contribution

that can be multiplied to emphasize training contribution of deleted tokens.

Source safety is one of the crucial problems that many countries and companies

concern .

Target safety is one of the crucial problems that many countries and companies

are concerned about .

Table 3.2: Example source and target for which edit words are “are concerned about.”

The training script reads binary edit values as an additional input of the same size as

the target values. After computing the usual cross-entropy cost on a given minibatch,
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for which edit tokens and non-edit tokens are equally weighted, the script increments

this cost by the product of itself with the edit vector of the minibatch and the edit weight

previously set as a training parameter (minus one, since the loss from these tokens has

already been counted once). As a result, the model is punished more severely for

Algorithm 1 Calculated Edit-Based Weighted Cost
1: procedure INCREMENTCOST(cost, edits, edit weight)

2: weight matrix← edits∗ (edit weight−1)

3: cost← cost+(cost∗weight matrix)

incorrectly transforming edit words than non-edit words.

3.3 Datasets

As in Susanto et al. (2014), Chollampatt et al. (2016), and others, we used NUCLE

(Dahlmeier et al., 2013) and Lang-8 (Mizumoto et al., 2011; Tajiri et al., 2012) as

training data, the CoNLL-2013 test set as development data (Ng et al., 2013), and the

CoNLL-2014 test set as test data (Ng et al., 2014).

NUCLE (National University of Singapore Corpus of Learner English) was created

expressly for GEC and is publicly available. It contains 1414 essays written by NUS

students on a wide variety of topics and corrected by professional English teachers

following a standardized annotation schema, illustrated in table 3.3. It includes 27

S Therefore , the equipments of biometric identification tend to

be in-expensive .

A 3 4|||Nn|||equipment|||REQUIRED|||-NONE-|||0

A 7 8|||SVA|||tends|||REQUIRED|||-NONE-|||0

A 10 11|||Mec|||inexpensive|||REQUIRED|||-NONE-|||0

Table 3.3: Example learner sentence and annotations from NUCLE corpus.

error categories, though our machine translation approach does not make use of error

category information to produce the corrected output.

Lang-8 is a corpus that was extracted from a language learning social network. The

120,000 English texts in the cleaned corpus were written by language learners, usually

as diary entries, and corrected by native speakers who were also users on the platform.
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As a result of the lack of standardized annotation, this data set is noisier, with target

sentences often including parenthetical comments by the annotator instead of strictly

correcting the ungrammatical sentence. Two examples are listed in table 3.4.

Source 1 The entertainment was to be at his wedding .

Truth 1 There will be entertainment at this wedding . ( sorry , I am not sure what

you wanted to say here )

Source 2 They were more expensive compared to others .

Truth 2 They were more expensive compared to others . ( this pronoun is unclear

“ I searched the internet and found the same items at a cheaper price . ”

is better )

Table 3.4: Training samples from Lang-8 in which target sentences include annotator’s

commentary in addition to or instead of strict correction of grammatical errors.

We considered the disadvantages of such noisy data and ultimately decided that

they were outweighed by the advantage of an aggregate training corpus of 2.2 million

sentences: among other benefits, a significantly larger corpus would result in fewer

issues related to rare word handling.

Other examples of noise in Lang-8 as well as other datasets used in this work are

hyperlinks, citations, and other forms of text for which grammatical error correction

seems inapplicable since they are not subject to English grammar rules. Some exam-

ples are in table 3.5. These were preprocessed just as any other standard text (prepro-

cessing steps are described next in subsection 3.3.1) and ultimately treated similarly to

how rare words would be treated.

Sample 1 References : * Peter G.@@ Peterson .

Sample 2 Harvard International Review .

Sample 3 23@@ .3 ( Fall 2001 ) : 66 * Central Provident Fund , from Wikipedia

http : //en.wikipedia.org/wiki/@@ C@@ entr@@ al @@

Provi@@ dent@@ @@ Fund * e@@ Go@@ v monitor .

Table 3.5: Three consecutive training “sentences” with no edits, since grammatical rules

do not apply to this kind of text.
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We used the test data from CoNLL-2013 as a validation set. This dataset has 50

additional essays written and annotated similarly to NUCLE. The only purpose of a

validation set was to track training progress and decide early stopping.

For our test data, we will use the test set from CoNLL-2014, which contains another

50 essays written and annotated like those in NUCLE. We report recall and F0.5 scores

on this dataset for consistent comparison against previous work.

3.3.1 Preprocessing

CoNLL and NUCLE datasets first had to be transformed from an annotation format

with source sentence and set of edits (shown in 3.3) into parallel texts that could be

processed by a sequence-to-sequence model as in neural machine translation. We used

a script from Junczys-Dowmunt and Grundkiewicz (2016) to convert CoNLL and NU-

CLE notation into parallel corpora. All datasets were received already tokenised in

the same way as NUCLE. We used the truecase of the Moses SMT framework (Koehn

et al., 2007) to normalise casing, then applied byte pair encoding with the open source

subword-nmt package. Finally, we had to replace any pipe symbols | in the datasets

with a special symbol <pipe> because they carry a special meaning in Nematus.

3.3.1.1 Truecasing

The truecaser in the open source mosesdecoder package was first trained on our con-

catenated NUCLE and Lang-8 training corpus. Based on the frequencies of words in

different cases, the truecaser determines when to lowercase sentence-initial tokens. In

the forward direction (preprocessing), the trained truecaser lowercases most sentence-

initial tokens, and in the reverse direction (postprocessing, applied to system output

before evaluation), detruecasing capitalises all sentence-initial tokens.

3.3.1.2 Byte Pair Encoding

Xie et al. (2016) and Yuan and Briscoe (2016) each had different approaches to dealing

with the problem of rare and unknown words in GEC. Instead of using character-level

encoding or transforming unknown words as a postprocessing step, we apply byte pair

encoding using the open source subword-nmt package (Sennrich et al., 2015). Byte

pair encoding is a compression algorithm that can be used to segment words into set

number of possible subword units based on how frequently these subwords appear as

units in the corpus. A dictionary of fifty thousand subword units was generated from
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our training dataset and all datasets were preprocessed by applying this encoding. As

a consequence, though “token” and “word” might be used interchangeably with regard

to the work in this thesis, tokens are not words per se but often subwords extracted

from this process.

3.3.2 Edit Frequency

One factor contributing to the failure of standard NMT techniques to learn to correct

grammatical errors, mentioned previously in chapter 1, is that the occurrence of gram-

matical errors in our corpora is far lower than the occurrence of grammatically correct

tokens. After generating edit vectors for the full training corpus including NUCLE

and Lang-8, we calculated that only 22.32% of all target tokens were edits. Similarly,

Junczys-Dowmunt and Grundkiewicz (2016) report that the CoNLL-2013 test set has

an grammatical error rate of 14.97% of all tokens.

As stated in chapter 1, the fact that edit tokens are so much more underrepresented

than non-edit tokens is a strong justification to give them more importance during

training. Despite addressing this imbalance, there remains an apparent discrepancy

between training and validation error rates, which may warrant future efforts to use a

validation set more representative of the training set or to clean up some of the noise

in Lang-8.

3.4 Tools

We used the following open source packages: Nematus (git version 73037e9), subword-

nmt (git version fb526f1 to generate byte pair encoding and version 8873136 for NMT

training), mosesdecoder (git version dc42bcb for NMT training).
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Results

Several baseline models were trained with the original Nematus training script to con-

firm that standard NMT training with cross-entropy loss reproducibly and reliably re-

sults in GEC systems with poor recall. To compare against these, we trained seven

additional models using the modified training script with different values of the novel

edit weight parameter: five were expected to have better recall than the baseline mod-

els, one roughly the same, and one worse. Not only did we confirm our hypotheses, we

also observed a general trend that greater weight on edit words during training leads to

greater recall.

Model P R F1 F0.5

Baseline 1 33.19 14.13 19.82 26.14

Baseline 2 33.76 13.62 19.41 26.05

Baseline 3 34.56 14.43 20.36 27.02

Edit weight 0 8.05 2.48 3.79 5.55

Edit weight 1 34.48 14.37 20.29 26.94

Edit weight 2 37.91 18.69 25.04 31.44

Edit weight 3 39.70 21.17 27.61 33.79

Edit weight 4 39.84 22.94 29.12 34.72

Edit weight 5 39.80 26.24 31.63 36.07

Edit weight 6 40.44 28.57 33.48 37.34

Table 4.1: Summary of results.

Finally, though it is not uncommon for improvements in recall to coincide with

deterioration in precision, this was not the case in our results; moreover, precision of

21
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our advanced models were even noticeably better than that of our baselines. In spite

of focusing only on improving recall rather than F0.5 measure using the M2 scorer, we

ended up demonstrating that NMT performance even as measured by the GEC standard

metric can be enhanced.

4.1 Baseline Models

As shown in table 4.1 above, all three models trained using the baseline training script

achieved a dismal performance on the CoNLL-2014 test set, no better than 14.4% recall

of grammatical errors. As expected, these models have learned often to copy input

sequences without correcting grammatical errors (false negatives), and in examples

like Sample 3 in table 4.3 even to make edits that are not necessary (false positives).

Source 1 Mizu@@ shima seaside industrial area is especially well known

as one of the largest industrial area in Japan .

Truth 1 Mizu@@ shima ’s seaside industrial area is especially well known

as one of the largest industrial areas in Japan .

Sample 1 Mizu@@ shima seaside industrial area is especially well known

as one of the largest industrial areas in Japan .

Source 2 it is very difficult for me to use “ listen to ” and “ hear ” properly .

Truth 2 it is very difficult for me to understand the difference between

“ listen to ” and “ hear . ”

Sample 2 it is very difficult for me to use “ listen to ” and “ hear ” properly .

Table 4.2: Model copies input without correcting grammatical errors (false negatives).

Source 3 I learnt English earlier than learning Japanese , but the latter is

more skilled than the former .

Truth 3 I learnt English earlier than learning Japanese , but the latter I ’m

more skilled at than the former .

Sample 3 I have learnt English earlier than learning the Japanese , but the

latter is more skilled than the former .

Table 4.3: Model attempts to correct text that is grammatically correct (false positives).
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4.1.1 A Positively Subterranean Model

As an extra assurance of a correct implementation, we trained models using edit weights

of 0 and 1. An edit weight of 1 is expected to result in a system performing exactly

as the baseline models because weighting the loss of an edit word one time as much

as the loss of a non-edit word is equivalent to ignoring whether a word is an edit or

not. An edit weight of 0 is expected to result in even poorer performance by effectively

ignoring the loss of all edit words altogether and learning from only non-edit words’

loss. These predictions are confirmed, as with edit weight 1 the system achieves scores

in the same range as the baselines’ and with edit weight 0 the system achieves scores

near 0.

Source 1 most of time I spend in the living room .

Truth 1 I spend most of my time in the living room .

Sample 1 most of time I spend the living room .

Source 2 do you have a I phone ? ? ? this is very handy !

Truth 2 do you have an iPhone ? this is very handy !

Sample 2 do you have a I phone ? ? ? this is very handy !

Source 3 in a box of Christmas cake instead of cake .

Truth 3 in a Christmas cake box in place of a cake .

Sample 3 in a box of Christmas cake instead of cake .

Table 4.4: Model with edit weight 0 copies input without correcting grammatical errors

(false negatives).

Source but it is not easy to decre@@ se the well@@ bing budget .

Truth but it is not easy to decrease the welfare budget .

Sample but it is not easy to Noy the well@@ bing budget .

Table 4.5: Model with edit weight 0 makes spurious edits, producing a hypothesis even

more ungrammatical than if it had copied its input.

As illustrated in tables 4.4 and 4.5, the model trained with edit weight 0 learns to

copy input text the vast majority of the time, and occasionally also makes edits that

result in outputs that are equally or more ungrammatical than the inputs.
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4.2 Advanced Models

After training with edit weights greater than 1, systems achieved dramatically better

recall and, somewhat surprisingly, better precision too, though the slope of incremental
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Figure 4.1: The greater the edit weight, the greater the recall.

improvement in precision is notably lower than that in recall.
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Figure 4.2: The greater the edit weight, the greater the precision.
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4.2.1 Goodbye to False Negatives

As recall is intended to capture the relative frequency of false negatives, it is exciting to

note that our best system (with recall 28.57% and F0.5 score 37.34%) seems to present

examples of all but false negatives. The example in table 4.6 includes true negatives

such as the phrase “first time” which has no grammatical errors and is correctly copied

by the system, true positives such as correcting “to use” to “using,” and false positives

such as unnecessarily changing “for me , it is the” to “that is my.”

Source for me , it is the first time to use Lang8 .

Truth for me , it is the first time using Lang8 .

Sample that is my first time using Lang8 .

Table 4.6: Model with edit weight 6 produces true negatives, true positives, and false

positives, but no false negatives (in this example).

Additional examples included in appendix A confirm that generally when the source

sentence contains grammatical errors, the system learns to correct at least some of them

rather than copying all or most of the time.

4.2.2 In Relation to Previous Work

Comparing the recall of our baseline systems and advanced models is evidence that we

have improved on the performance of standard NMT methods for GEC. In addition,

our best system has higher recall than any systems surveyed in chapter 2.

P R F0.5

Susanto et al. (2014) 53.55 19.14 39.39

Rozovskaya and Roth (2016) 60.17 25.64 47.40

Junczys-Dowmunt and Grundkiewicz (2016) 58.91 25.05 46.37

61.27 27.98 49.49

Xie et al. (2016) 49.24 23.77 40.56

Yuan and Briscoe (2016) ? ? 39.90

this work 40.44 28.57 37.34

Table 4.7: The results of this work in relation to previous work.
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On the other hand, while we have shown that precision can improve from apply-

ing our novel edit-based weighted cost function, we have not produced a system with

precision comparable to the results in table 4.7.

4.2.3 Training Times

There was no particular pattern to the amount of training needed for systems to hit

an early stopping patience of 10. Aside from the advanced model with edit weight

Model Minibatches

Edit weight 0 210k

Edit weight 1 590k

Edit weight 2 710k

Edit weight 3 480k

Edit weight 4 350k

Edit weight 5 400k

Edit weight 6 620k

Table 4.8: No apparent relation between edit weight and training time.

0, which converged after 210k minibatches or parameter updates, training duration

ranged from 350k minibatches with edit with 4 to 710k minibatches with edit weight

2. More specifically, increasing edit weight did not appear to speed up training conver-

gence.

4.2.4 Bonus: Better than Humans?

Not only does the best model seem to avoid false negatives more often than the base-

lines or other advanced models with lower edit weights, weveral interesting examples

follow in table 4.9 in which a native English would likely judge the system’s output

as even more grammatical than the proposed ground truth: in Truth 1, “want” is mis-

spelled; in Truth 2, “our life” is a noun agreement error; in Truth 3, “impossible” is

misspelled.

Whether these examples indicate that the system actually outperforms the human

annotators of the datasets we used is not a serious question to be decided here, but

they do show that finding high quality, uncontroversial data and foolproof evaluation

remain open challenges in grammatical error correction work.
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Source 1 I think I try to do Twitter for learning English ...

Truth 1 I wan to try to use Twitter to learn English ...

Sample 1 I think I will try to use Twitter to learn English ...

Source 2 they play the important role in our life which can not be substituted .

Truth 2 they play an important role in our life which can not be substituted .

Sample 2 they play an important role in our lives which cannot be substituted .

Source 3 it is almost imp@@ osible for us to keep way from it .

Truth 3 it is almost imp@@ osible for us to keep way from it .

Sample 3 it is almost impossible for us to keep way from it .

Table 4.9: Model with edit weight 6 produces outputs even more grammatical than the

target sentences.
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Conclusion

The results presented in this thesis have shown that applying an edit-based weighted

cost function in training a neural machine translation framework for grammatical er-

ror correction can make learning more effective. Specifically, emphasising edit words

more than non-edit words enforces that the system learn to actually correct grammati-

cal errors instead of simply copying text. The result is greater recall and F score with

no compromise to precision.

The novel training objective function introduced in this project has allowed us to

outperform state-of-the-art grammatical error correction systems on error recall, al-

though our best system remains less advanced on error precision. Future work that

uses our edit-based weighted cost function should consider how to combine our recall-

oriented loss function with precision-oriented training techniques.

To take our results further, we suggest further exploration of the edit weight hyper-

parameter space, which we were unable to do in the end due to time and computational

resource constraints. We also strongly suggest training multilayer encoder-decoders

and optimising other training hyperparameters.

5.1 Edit Vector Extraction

An alternative approach we considered for edit vector extraction uses the network’s

attention mechanism instead of the M2 alignment algorithm to extract an edit vector

for each target sentence. We decided ultimately to use the M2 scorer because of its

precedent as an established approach for GEC evaluation. Given a reliable way of as-

sessing the alignment accuracy of other approaches such as using the model’s attention,

it could be an interesting direction in which to explore the use of edit vectors.

29
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5.2 Dataset Issues

In section 3.3, we raised potential issues stemming from the noisiness of Lang-8 and

from the low frequency of edit tokens in our training and validation (and probably test)

corpora. The latter problem may have been partially mitigated by multiplying the loss

of edit tokens, but there also remains the question of whether the error frequency and

the general content of our training set (NUCLE and Lang-8 combined) are representa-

tive of the validation and test sets used (CoNLL-2013 and CoNLL-2014 test data), and

therefore whether the learning of our models is truly generalizable to unseen texts.

After all is said and done, our results and those of most previous work in GEC

are only applicable to the writing of second language learners because they are the

primary source of GEC datasets. However, GEC in general is relevant to writers of any

linguistic background and could benefit from a greater variety of annotated data. With

cleaner and more varied data as well as clever training techniques like the modified

cost function implemented in this thesis project, this thesis can be error-free; more

importantly, GEC researchers can push the envelope on an NLP application that helps

us all be better writers.
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Figure A.1: Generally speaking, F0.5 score increases with edit weight, with the best

score of 37.34% reached by the system trained with edit weight 6.
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Source 1 I felt his ear@@ n@@ ness to study Japanese and his sincerity .

Truth 1 I felt his eagerness to study Japanese and his sincerity .

Sample 1 I felt his eagerness to study Japanese and his sincerity .

Source 2 could you give me a ride to work on Monday ?

Truth 2 could you give me a ride to work on Monday ?

Sample 2 could you give me a ride to work on Monday ?

Source 3 this essay will discuss about whether a carrier of a known genetic risk

should tell his or her relatives or not .

Truth 3 this essay will discuss whether a carrier of a known genetic risk should

tell his or her relatives or not .

Sample 3 This essay will discuss whether a carrier of a known genetic risk should

tell his or her relatives or not .

Table A.1: Samples produced by our best model, trained with edit weight 6.
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