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0.1 Introduction

The task of grammatical error correction (GEC) has been established in NLP
research as the automatic identification and editing of grammatical errors in
the writing of foreign language learners. Ultimately, the goal is to apply
the task to facilitating foreign language learning by providing such feedback
quickly and inexpensively without requiring a qualified human teacher.

In light of this goal, GEC system evaluation in recent years has empha-
sized precision more than recall. This shift is based on the assumption that
a system that fails to correct grammatical errors would be preferable to a
system that introduces errors to grammatically correct writing. For a novice
language learner, the latter type of system errors could harm learning; even
for a user more familiar with the grammatical rules of the language, such
automated feedback could provide a bad user experience. Nowadays, GEC
systems are evaluated by their F0.5 score, which weights precision twice as
much as recall.

An apparent drawback of emphasizing precision over recall is that neural
machine translation systems tuned to optimize an F0.5 score seem to fail to
learn to correct grammatical errors. One possible approach to address this
issue is training with an objective function that punishes the system more
severely for false negatives, which may prevent the system from learning
simply to copy text from input to output. The purpose of this project is to
build a GEC system using neural machine translation techniques that can
match the state of the art performance of phrase-based statistical machine
translation techniques, in terms of both F score and recall.

0.2 Background

Research on GEC developed significantly with several recent shared tasks
specifically dedicated to it: the Helping Our Own shared tasks in 2011 and
2012 [Dale and Kilgarriff, 2011, Dale et al., 2012], and the shared tasks at the
seventeenth and eighteenth conferences on Computational Natural Language
Learning (CoNLL) in 2013 and 2014 [Ng et al., 2013, Ng et al., 2014]. In just
three years, the most popular approaches to GEC evolved from highly lin-
guistically motivated and error-specific classifiers and rule-based methods to
more generalized machine translation techniques. Error-specific approaches,
while they require more linguistic expertise and model complexity to achieve

1



full coverage of grammatical error types, have the advantage of performing
particularly well on the specific error types they target. On the other hand,
statistical machine translation (SMT) methods have achieved state-of-the-
art results on GEC, capturing complex interactions between different error
types without requiring the individual construction of as many component
models. Some have attempted to combine the advantages of each technique
with hybrid systems [Susanto et al., 2014, Rozovskaya and Roth, 2016].

Meanwhile, the task of machine translation (MT) has experienced its
own revolution, from the advent of neural machine translation (NMT) meth-
ods around 2013 and 2014 [Kalchbrenner and Blunsom, 2013, Cho et al.,
2014b, Cho et al., 2014a, Sutskever et al., 2014] to their adoption by Google
and Microsoft in 2016 [Wu et al., 2016]. While many GEC researchers
have continued to improve the performance of phrase-based SMT [Junczys-
Dowmunt and Grundkiewicz, 2016, Chollampatt et al., 2016] and hybrid
classifier-SMT systems [Susanto et al., 2014, Rozovskaya and Roth, 2016],
those pioneering the application of NMT methods to GEC have not been
able to meet the state of the art performance [Xie et al., 2016, Yuan and
Briscoe, 2016].

0.2.1 Grammatical Error Correction

CoNLL Shared Tasks

The CoNLL-2013 shared task covered only five grammatical error types: ar-
ticle or determiner errors, preposition errors, noun number errors, verb form
errors, and subject-verb agreement errors. The majority of systems built by
the sixteen teams who submitted descriptive papers were error-specific clas-
sifiers. Some classifiers were trained on examples that encoded the context in
which each error type occurred, some used hand-crafted deterministic rules,
and some were built with a combination of the two approaches. A handful of
systems were built using machine translation approaches, both phrase-based
and syntax-based statistical machine translation, and two systems used lan-
guage modeling to choose a corrected sentence that is more likely than the
uncorrected sentence. These different approaches are also used in combina-
tion, in some cases set up as a pipeline to handle different error types with
different GEC systems.

The CoNLL-2014 shared task expanded coverage to include all 28 error
types annotated in its training dataset (NUCLE, the same training dataset
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used for CoNLL-2013). Additional error types included verb tense errors,
pronoun reference errors, wrong idioms, etc. Including such varied error
types that potentially interact in complicated ways made it much harder to
approach the task one error type at a time. As a result, there was a greater
prevalence of error-agnostic approaches such as language modeling and ma-
chine translation (phrase-based only this time, not syntax-based) among the
systems implemented by the twelve teams who submitted system description
papers. The submission with the best F0.5 score used a pipeline of determin-
istic rules, language model ranking, and SMT.

Hybrid Classifier-SMT Systems

Susanto et al. (2014) surpassed the performance of the best system from
CoNLL-2014 using a hybrid system with both error-specific classifiers and
SMT. Their best reported F0.5 score of 39.39% on the test data from CoNLL-
2014 resulted from a combination of four independent GEC systems: two that
were pipelines of classifier-based correction steps of six common error types
(spelling errors, noun number errors, preposition errors, punctuation errors,
article errors, and verb form or subject-verb agreement errors) and two that
were SMT models. The pipeline systems differed in the order of the correc-
tion steps (swapped noun number and article errors), and the SMT systems
differed in phrase table construction (two phrase tables built from two sep-
arate corpora versus one phrase table built from the concatenation of the
two corpora). Three of the six correction steps used classifiers learned from
context features for noun number, prepositions, and articles; two were rule-
based classifiers to fix punctuation errors and subject-verb agreement errors;
and the first correction step was the output of an open source spell-checker
(Jazzy), whose output was filtered using language model probabilities. Nei-
ther individual systems nor combinations of one pipeline and one SMT system
each could match the performance of the combination of all four systems.

More recently, Rozovskaya and Roth (2016) far surpassed even this per-
formance with a classifier-SMT model combination that scored 47.40% on the
CoNLL-2014 test set. The classifier used in the final system combination was
initially trained on native data, i.e. a corpus of text assumed to be grammat-
ically correct, then “tailored” by artificially introducing grammatical error
patterns from a learner corpus, and finally further enhanced by introducing
mechanical errors in punctuation, spelling, and capitalization. By running
the classifier’s output through an SMT system trained on the Lang-8 paral-
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lel corpus, they pushed the state-of-the-art to 8 percentage points more than
Susanto et al. (2014).

SMT Systems

The state of the art in GEC at the time of this writing was set by Junczys-
Dowmunt and Grundkiewicz (2016) with an SMT system tuned to the GEC-
specific M2 metric (same as the F0.5 score used to evaluate GEC systems
since CoNLL-2014) rather than to BLEU score as in Susanto et al. (2014)
and Rozovskaya and Roth (2016).

Figure 1: From Junczys-Dowmunt and Grundkiewicz (2016): comparison
with previous work on the CoNLL-2014 task, trained on publicly available
data. Dashed lines mark results for their baseline systems with restricted
(r), same datasets used by Susanto et al. (2014), and unrestricted (u) data,
same datasets used by Xie et al. (2016).

Tuning to M2 with a standard phrase-based SMT system resulted in an
impressive score of 46.37% on the CoNLL-2014 test data; when augmented
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with new GEC-specific features and a large language model trained on the
Common Crawl corpus, the system’s score increased to 49.49%. The GEC
features added onto the standard SMT features include stateless (within
phrase) features that captured the edits required to transform an input phrase
into a candidate output, stateful (phrase context) features that captured the
likeliness of a candidate output phrase in the context of the rest of the out-
put sentence, as well as more fine-grained features capturing edit operations
between source and candidate target sentences. Such features have not yet
been applied in NMT methods for GEC.

NMT Systems

Xie et al. (2016) were the first to apply neural machine translation meth-
ods to the GEC task, achieving a score of 40.56% on the CoNLL-2014 test
data. They implemented a character-level encoder-decoder recurrent neural
network architecture with attention and a language model to prune trans-
lation hypotheses for beam search. Their language model was trained on a
subset of the Common Crawl corpus, resulting in 2.2 billion n-grams, only a
tiny fraction of the more than 500 billion unique n-grams available in the full
corpus [Buck et al., 2014]. This standard NMT architecture was combined
with a mechanism for classifying proposed edits as legitimate or spurious,
based on the same understanding mentioned in the introduction that the
user of a GEC system would prefer that the system fail to suggest an edit
than that it make a spurious suggestion. Finally, with data augmentation
using two common error types according to error distribution statistics for
the CoNLL-2014 training set, their best model outperformed Susanto et al.
(2014) and set the state of the art at the time.

Yuan and Briscoe (2016) also tried to apply NMT to GEC, outperforming
Susanto et al. (2014) but falling short of the performance of Xie et al.’s (2016)
best system with a score of 39.90% on the CoNLL-2014 test data. Their
implementation operated on the word level instead of the character level
as in Xie et al. (2016). However, word-level NMT encounters a problem
with handling rare words, due to the necessity of restricting the size of the
known vocabulary so as to efficiently perform each word embedding and
compute each softmax at the output layer. This problem is exacerbated
in GEC since grammatical errors and spelling mistakes necessarily increase
the source vocabulary size and are interpreted as extremely rare words any
time a particular error is not systematic and widespread. To handle such

5



“rare words”, they aligned unknown target words to their source words using
an unsupervised aligner and applied a word-level translation model learned
from IBM Model 4 [Germann et al., 2001]. However, it seems this approach
to handling the rare word problem may not be as effective as Xie et al.’s
character-level approach.

0.2.2 Machine Translation

Grammatical error correction has taken a lot of inspiration from the field of
machine translation. In this way of framing the task, GEC is the “transla-
tion” of ungrammatical text into grammatical text.

Modern approaches to machine translation have been dominated by phrase-
based statistical methods [Koehn et al., 2003] and more recently by meth-
ods using recurrent neural networks [Kalchbrenner and Blunsom, 2013, Bah-
danau et al., 2014, Sutskever et al., 2014, Cho et al., 2014b]; some have
even combined both approaches at the decoding step, with promising results
[Junczys-Dowmunt et al., 2016].

In this section, we use the usual MT terminology of translating a foreign
sentence f (a.k.a. source) into an English sentence e (a.k.a. target); for
GEC, f would be the sentence with grammatical errors while e would be the
corrected sentence.

Phrase-based SMT

The problem of statistical machine translation can be framed using Bayes’
Rule as finding the most likely translation e for a foreign sentence f :

ê = argmax
e

p(e|f) = argmax
e

p(e)p(f |e) (1)

This formulation breaks the system down to two components: an n-gram
language model p(e) and a translation model (a conditional language model)
p(f |e). In Koehn et al. (2003), there is a third component ωlength(e), where
generally ω > 1 to bias the system to produce longer output sentences as
a way of “calibrating” the source and target sentence lengths (much like
the standard metric for machine translation, BLEU, penalizes short transla-
tions). In phrase-based translation, the translation model (TM) operates at
the phrase level such that the probability p(f |e) for the whole sentence can
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be broken down further:

p(f |e) =
I∏

i=1

p(fi|ei)d(ai − bi−1) (2)

where I is the number of phrases in the segmented foreign sentence f , so fi
and ei are respectively the foreign and English phrases corresponding to the
ith phrase of the foreign sentence, and d is a distortion model that captures
any phrase reordering that should occur as a result of translation.

NMT

Current neural machine translation techniques attempt to model p(e|f) di-
rectly without the breakdown of language model and translation model. The
general idea behind the encoder-decoder architecture introduced by Sutskever
et al. (2014), Cho et al. (2014b), and Bahdanau et al. (2014) is to use an
RNN to encode the source sentence into a fixed-length vector, then use an-
other RNN to decode this vector into a target sentence. Since LSTMs and
GRUs are better at capturing long-range dependencies in sequences, they are
often preferred over vanilla RNNs for tasks such as machine translation.

Figure 2: From Sutskever et al. (2014): a basic encoder-decoder network’s
architecture, with a single layer each in the encoder and decoder LSTMs.

Bahdanau et al. (2014) proposed an encoder-decoder architecture con-
sisting of a bi-directional LSTM as the encoder and added an attention mech-
anism to the decoder that behaves somewhat like alignment or distortion in
phrase-based SMT to provide a probability distribution over the input po-
sitions for any given output position. A context vector calculated at each
output position is a weighted average of the encoded representations of each
input position, where the weights depend on the alignment probability be-
tween the input and output positions. This attention mechanism removes
the requirement that the input sequence be encoded as a fixed-length vector.
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The architecture used in Xie et al. (2016) included a similar attention
mechanism in the decoder and a three-layer bi-directional GRU with a pyra-
mid structure as the encoder to reduce the computational complexity result-
ing from operating at a character level.

Figure 3: From Xie et al. (2016): pyramid structure of character-level en-
coder to reduce the total number of time steps of the RNN.

0.3 Approach

0.3.1 Datasets

As in Susanto et al. (2014), Chollampatt et al. (2016), and others, we plan to
use NUCLE [Dahlmeier et al., 2013] and Lang-8 [Mizumoto et al., 2011, Tajiri
et al., 2012] as training data, the CoNLL-2013 test set as development data
[Ng et al., 2013], and the CoNLL-2014 test set as test data [Ng et al., 2014].

NUCLE (National University of Singapore Corpus of Learner English)
was created expressly for GEC and is publicly available. It contains 1414
essays written by NUS students on a wide variety of topics and corrected by
professional English teachers in a standardized way.

Lang-8 is a corpus that was extracted from a language learning social
network. The 120,000 English texts in the cleaned corpus were written by
language learners, usually as diary entries, and corrected by native speakers
who were also users on the platform. As a result, this data set is noisier,
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so we plan to use it as a backup only if a larger parallel corpus is deemed
necessary.

Another possible source of training data is the FCE (First Certificate in
English exam), a set of 1237 texts written by exam-takers and annotated by
examiners [Yannakoudakis et al., 2011].

Either of these backup data sources could alternatively be used as devel-
opment sets, but first we will use the test data from CoNLL-2013 to tune
parameters. This dataset has 50 additional essays written and annotated
similarly to NUCLE. For our test data, we will use the test set from CoNLL-
2014, which contains another 50 essays written and annotated like those in
NUCLE.

In addition to an encoder-decoder model trained on parallel corpora, we
plan to train a language model much larger than that in Xie et al. (2016),
ideally on the full 23.62 TiB of English text in the Common Crawl corpus.

0.3.2 Model

Architecture

We plan to implement a few different basic RNN encoder-decoder systems to
establish a baseline. We will try both word-level and character-level systems,
both regular and bi-directional LSTM encoders, and with content-based at-
tention. The purpose is to confirm that basic “out-of-the-box” NMT simply
copies input to output.

Loss Function

In order to improve upon the baseline, we will add a weight to the default loss
function that increases the loss contribution for time steps when the input
and target values are different. In other words, where the learner sentence
contains a grammatical error, it is especially important for the system to learn
the correct behavior; where the learner sentence is grammatically correct, it
is less important whether the system copies the input or applies an edit.

The baseline models will use the same cross-entropy loss function used in
Xie et al. (2016):

L(x, y) = −
T∑
t=1

logP (yt|x, y<t) (3)
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where x is the source sentence and y is the output sentence with T time
steps.

The weighted cross-entropy loss function used to train more advanced
models will look more like this:

L(x, y) = −
T∑
t=1

λ(xt, yt) logP (yt|x, y<t) (4)

where the new weight is a function of the input and output at a particular
time step t:

λ(xt, yt) =

{
1 if xt = yt

Λ otherwise
(5)

We will use the dev set identified previously to tune this weight parameter
Λ.

Tools

Nematus is a package for building NMT systems using Python and Theano
[Sennrich et al., 2017]. The default encoder-decoder architecture it imple-
ments is based on Bahdanau et al. (2014). Its default training objective is
minimizing cross-entropy, for which it uses stochastic gradient descent. Since
it also supports minimum risk training (MRT), we can use it to optimize di-
rectly for the metric that is the ultimate criterion for GEC, M2.

0.4 Evaluation

MaxMatch (M2) is a scoring system designed for GEC [Dahlmeier and Ng,
2012]. Before M2, F scores were calculated between gold standard and sys-
tem annotations of the edits required to transform an input sequence into its
target sequence. Since the output of the system is the sequence itself rather
than the set of edits, the set of system edits is ambiguous. The purpose of
the M2 scorer is to choose from ambiguous system edit possibilities in order
to maximize the overlap between system edits and gold standard edits when
extracting the set of system edits from which to calculate an F score. By
doing so, the F score better and more consistently reflects the performance
of the system being evaluated. We will evaluate our final model(s) using M2

to calculate F0.5 on the test set, for comparison with other GEC systems, as
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well as recall specifically, for comparison with the baseline model to ensure
that the final model learns not to simply copy from input to output.

0.5 Work Plan

The official project timeline begins June 2 and lasts exactly eleven weeks.
Below is an approximate breakdown of the plan of work, beginning before
that time period:

• Further study on proposed methods: April - May

• Familiarization with tools and packages: May - June

• Baseline model(s) implementation: June 4 - June 15

• Refine methods: June 18 - June 22

• Advanced models implementation: June 25 - July 18

• Writing: July 18 - August 18

In the time leading up to the official project start time, preliminary
work involving familiarization with Nematus and the methodologies proposed
above will take place. The first couple of weeks of project work will be de-
voted to implementing baseline models with Nematus and confirming that
they generally fail to correct grammatical errors. Following this, one week is
set aside specifically for re-assessing and refining methods for implementation
of the more advanced models, which will then take place over the following
3-4 weeks. The last one month of the project timeline will be dedicated pri-
marily to writing, though some time may overlap with implementation and
evaluation of advanced models.
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